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Abstract
Metabarcoding of DNA extracted from community samples of whole organisms 
(whole organism community DNA, wocDNA) is increasingly being applied to terres-
trial, marine and freshwater metazoan communities to provide rapid, accurate and 
high resolution data for novel molecular ecology research. The growth of this field has 
been accompanied by considerable development that builds on microbial metabarcod-
ing methods to develop appropriate and efficient sampling and laboratory protocols 
for whole organism metazoan communities. However, considerably less attention has 
focused on ensuring bioinformatic methods are adapted and applied comprehensively 
in wocDNA metabarcoding. In this study we examined over 600 papers and identified 
111 studies that performed COI metabarcoding of wocDNA. We then systematically 
reviewed the bioinformatic methods employed by these papers to identify the state- 
of- the- art. Our results show that the increasing use of wocDNA COI metabarcoding 
for metazoan diversity is characterised by a clear absence of bioinformatic harmo-
nisation, and the temporal trends show little change in this situation. The reviewed 
literature showed (i) high heterogeneity across pipelines, tasks and tools used, (ii) lim-
ited or no adaptation of bioinformatic procedures to the nature of the COI fragment, 
and (iii) a worrying underreporting of tasks, software and parameters. Based upon 
these findings we propose a set of recommendations that we think the metabarcod-
ing community should consider to ensure that bioinformatic methods are appropriate, 
comprehensive and comparable. We believe that adhering to these recommendations 
will improve the long- term integrative potential of wocDNA COI metabarcoding for 
biodiversity science.
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1  |  INTRODUC TION

Metabarcoding of DNA extracted from community samples of 
whole organisms (whole organism community DNA, wocDNA) 
is a reliable and cost- efficient tool to study the biodiversity of 
metazoan communities (Bush et al., 2019; Ji et al., 2013; Porter & 
Hajibabaei, 2018). This approach, which has also been referred to 
as community DNA (e.g., Andújar et al., 2018; Deiner et al., 2017) or 
bulk sample DNA (e.g., Braukmann et al., 2019; Yu et al., 2012) me-
tabarcoding, primarily differs from other approaches such as eDNA 
(environmental or extra- organismal DNA; Taberlet et al., 2012) or 
iDNA (vertebrate DNA ingested by invertebrates; Schnell et al., 
2012) in that the source material is a community of whole organ-
isms collected through direct trapping or collection (e.g., malaise 
traps; Ji et al., 2013, or canopy fogging; Creedy et al., 2019) or sep-
arated from an environmental sample (e.g., from soil; Arribas et al., 
2016, or water; Suter et al., 2021). As a consequence, compared 
with eDNA and iDNA, wocDNA samples are characterised by (i) a 
comparatively low level of DNA degradation in the target species, 
(ii) a low proportion of nontarget species, and (iii) the possibility for 
complementing, refining and/or validating metabarcoding- derived 
community data against other conventional morphological and mo-
lecular methods.

Metabarcoding of wocDNA samples is increasingly employed in 
community ecology, evolutionary ecology, biogeography, conserva-
tion biology, environmental management, and policy and decision- 
making (e.g., Bush et al., 2020; deWaard et al., 2019; Leese et al., 
2018). Metazoan wocDNA metabarcoding has been adapted from 
pioneering approaches developed to inventory and characterise mi-
crobial diversity (e.g., Gilbert et al., 2010; Sogin et al., 2006). The 
majority of these adaptations have focused on sampling, and molec-
ular laboratory steps, including adapted protocols to (i) sample, sep-
arate, enrich and/or clean animal wocDNA samples (Creedy et al., 
2019; Fonseca et al., 2010, 2011), (ii) perform wocDNA extractions 
(Marquina et al., 2019; Nielsen et al., 2019), (iii) design and evalu-
ate primers (Braukmann et al., 2019; Elbrecht et al., 2019; Elbrecht 
& Leese, 2017), optimise amplification (Krehenwinkel et al., 2017) 
and prepare libraries (Yang et al., 2021). There is a growing consen-
sus on the use of the mitochondrial cytochrome oxidase subunit I 
(COI) barcode, rather than other markers widely used for metabar-
coding of nonmetazoan communities, as the standard for wocDNA 
metabarcoding due to the range of COI primers with demonstrated 
efficiency (Braukmann et al., 2019; Elbrecht & Leese, 2017), and the 
potential of COI to improve the utility, resolution and reliability of 
wocDNA metabarcoding data (Andújar, Arribas, Gray, et al., 2018; 
Turon et al., 2020).

However, in contrast to these advances in sampling and molec-
ular processing, there has been limited effort to review and eval-
uate how bioinformatic processing has been adapted to metazoan 
wocDNA samples and the COI barcode, nor to examine consistency 
in bioinformatic approaches across the field. Broadly, bioinfor-
matic tasks involve the computational cleaning, filtering and anal-
ysis of raw sequence data to produce biodiversity data comprising 

taxonomic units and their incidence across samples, implemented 
in a particular order (a “pipeline”). There are a wide array of soft-
ware tools available for performing different bioinformatic tasks, 
from standalone tools to catch- all software packages (e.g., OBItools 
Boyer et al., 2016; QIIME Caporaso et al., 2010; USEARCH/UPARSE 
Edgar, 2013; and its open- source derivative VSEARCH Rognes et al., 
2016). These tools have largely been developed for metabarcode 
loci other than the COI region, with very few tools explicitly devel-
oped for protein coding metabarcodes (although see Andújar et al., 
2021; Nugent et al., 2020; Ramirez- Gonzalez et al., 2013). To fully 
capitalise on the COI barcode for metabarcoding, bioinformatics 
should be specifically tailored to its evolutionary properties, such 
as the ability to interrogate the amino acid translation, and account-
ing for established patterns of sequence variation in protein cod-
ing genes for strict filtering. Additionally, metabarcoding employs 
a number of key bioinformatic tasks for which multiple alternative 
algorithms have been developed (e.g., denoising algorithms), with 
considerable variation in outcomes depending on parameters and 
thresholds applied.

The structure of a bioinformatic metabarcoding pipeline will 
depend strongly on the research aim, amplification and sequencing 
protocols, target locus, and target biodiversity fraction. The diversity 
of bioinformatic tasks and the software approaches to implement 
them is of course beneficial for designing appropriate pipelines, but 
such heterogeneity may also restrict integrated, standardised and 
synergistic growth in the field. As metazoan wocDNA metabarcod-
ing becomes more accessible to researchers from a range of fields 
and backgrounds, harmonisation of bioinformatic approaches is 
important to ensure (i) high- quality, reproducible data amenable to 
qualitative or quantitative reviews and meta- analysis across studies, 
and (ii) a reliable, consistent methodology for wider implementation, 
development and expansion of wocDNA metabarcoding. We con-
sider harmonisation not to mean strict prescription of the tasks and 
software to use, nor their order. Instead a harmonised field would 
recognise the diversity of approaches available, while recording key 
steps and establishing the effects of parameter choice on the out-
come of metabarcoding studies. This approach could be enabled by 
the adoption of universal aligned standards for data generation and 
processing, while allowing for flexibility in implementation to adapt 
to varying research goals and take advantage of novel methodolog-
ical development.

Harmonisation requires comprehensive examination of current 
practice to understand the aims and approaches of prior work, and 
a synthesis of the successes and failures in past implementations for 
the purposes of elaborating a framework to guide future research. 
Therefore it is our aim to summarise the state of the art for bio-
informatic processing of metazoan wocDNA COI metabarcoding, 
and in doing so assess the potential for harmonisation. To this end, 
we performed a systematic review of peer- reviewed studies, collat-
ing information on the different bioinformatic pipelines, tasks and 
tools used in wocDNA COI metabarcoding in >100 recent studies 
(2011– 2020). We use this data to (i) describe the diversity, heteroge-
neity and reproducibility of the bioinformatic procedures followed, 
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(ii) identify the extent to which these procedures are compatible 
with the evolutionary properties of the COI marker, and (iii) iden-
tify the key bioinformatic tasks, provide a framework for successful 
metabarcoding bioinformatics and make recommendations towards 
harmonised bioinformatic procedures for metazoan wocDNA COI 
metabarcoding.

2  |  MATERIAL S AND METHODS

2.1  |  Bibliographic search and screening

We focused this work on studies using whole organism community 
DNA (wocDNA) metabarcoding. In general, we define wocDNA 
samples as those where the target organisms were: (i) probably alive 
at the time of sampling, (ii) present as a largely complete specimen, 
and (iii) potentially identifiable using classical methods of morpho-
logical analysis. We exclude eDNA and iDNA metabarcoding due to 
the potentially different bioinformatic processing needs associated 
with these samples. In particular, eDNA and iDNA bioinformatic 
methods need to accommodate degraded DNA and a potentially 
high proportion of nontarget reads. Furthermore, in many cases 
wocDNA metabarcoding is directly comparable to direct observa-
tion of specimens and conventional methods of taxonomic assign-
ment not available for eDNA metabarcoding (Ji et al., 2013; Aylagas 
et al., 2016). This allows for more objective stringency thresholds 
in bioinformatic filtering and delimitation of operational taxonomic 
units (OTU).

We conducted a systematic search of peer- reviewed studies in 
the Web of Science (WOS) Core Collection (Science Citation Index 
Expanded, 1900– present) on 3 November 2020, using the search 
“TS = (metabarcoding) NOT TS = (*micro* OR *bacteria* OR *myco* 
OR *archaea* OR fungi OR plant OR eDNA OR environmental 
DNA)”. These search parameters were selected in order to obtain 
a comprehensive set of wocDNA metabarcoding studies limited to 
Metazoa.

The systematic search resulted in 692 records, which were 
screened to to select only those studies that: (i) amplified some 
portion of the standard COI barcode “Folmer” region (Folmer et al., 
1994), (ii) fit our definition of wocDNA samples, comprising mix-
tures of organisms extracted from the substrate, and (iii) provided a 
characterisation of metazoan communities. Studies targeting extra- 
organismal DNA (i.e., eDNA, iDNA) were excluded. We included 
studies of experimental mock communities composed of mixtures 
of DNA extracted from individual specimens or mixtures of spec-
imens, and we also included studies where the target organisms 
remained partially or completely within an environmental substrate 
upon which DNA extraction was performed (e.g., parasites within a 
host, arthropods within soil), if the principal target was the whole 
organism community DNA. After reviewing the final set of filtered 
papers, 24 additional papers fitting the selection criteria but not 
present in the systematic WOS search were also included. A total 

of 111 articles constituted the set of core papers for subsequent as-
sessment (see Table S2 for a complete list).

2.2  |  The core studies

All papers were systematically processed to record (i) the research 
aim and type of samples analysed, (ii) the bioinformatic tasks and 
pipelines implemented, and (iii) the software tools used and the re-
producibility of the bioinformatic procedures employed. We define 
these terms as follows:

● Task: a specific, self- contained action in a pipeline, generally 
with a clearly- defined purpose and performed by a single tool. 
e.g., demultiplexing.

● (Software) tool: a specific piece of software, or a specific iden-
tifiable function within a software package. e.g., Cutadapt, or 
USEARCH cluster_otus.

● Pipeline: a sequence of steps in a specific order, each step per-
forming a particular task and using a specific tool.

The research aim was categorised according to whether the focus 
was (i) the comparison of molecular and/or bioinformatic procedures 
for metabarcoding, (ii) a proof- of- concept or feasibility study into the 
success of metabarcoding for uncovering accurate community data 
in the taxon/community/biome studied, or (iii) principally the study 
of ecological patterns and processes. We recorded whether the me-
tabarcoded communities were sampled from marine, freshwater, 
terrestrial biomes or from a host species, and finally if the targets 
were invertebrates or vertebrates.

Subsequently, the bioinformatic procedures for each paper were 
systematically parsed to identify the different tasks implemented. A 
total of 30 distinct bioinformatic tasks were identified starting from 
initial procedures on raw sequencing files through to the generation 
of community tables (see Table 1 for a description of each task). 
We focused solely on bioinformatic tasks that were presented as 
necessary for the generation of information about the occurrence 
or incidence of taxonomic units in the sampled communities (i.e., 
community data), and the taxonomic identity of these units. For 
example, we did not record any steps performing phylogenetics 
with a final OTU set, although we recorded steps where phylogeny- 
based methods were used as part of OTU delimitation and filtering. 
Similarly, we recorded tasks that performed filtering of community 
data for the purposes of removing OTUs or OTU records arising 
from erroneous sequences or from cross- talk/contamination (Edgar, 
2018), but we did not record tasks that filtered community data 
for the purposes of statistical correction, such as normalisation or 
rarefaction.

Once the different tasks implemented by each article were 
identified, the pipeline used was also recorded based on the order 
in which the different tasks were mentioned in the text, figures, 
Appendix S1 and/or cited papers. Where multiple mutually exclusive 
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TA B L E  1  Table of all bioinformatic tasks performed across the core papers set

Task group Task Description

Number 
of papers 
reporting 
task

Number 
of papers 
not 
reporting 
software

Total 
number 
of 
software 
tools

Total 
number 
of 
software 
functions

Number 
of papers 
performing 
manually

Read 
preparation

Quality control Generating a report of sequence quality 
information from a sample or set of 
samples -  no modification is done to 
data

19 0 4 4 0

Adapter trimming Trimming of sequencing adapters 9 1 6 6 0

Demultiplexing Separation of sequences from a mixed 
pool into separate pools based on the 
occurrence of a unique set of bases 
(index or tag)

55 17 16 19 0

Pair merging The assembly of mate pair reads into a 
single contig

63 1 10 18 0

Quality trimming The removal of bases from either or both 
ends of sequences in a pool based on 
quality scores

20 1 8 10 0

Mate pairing The identification and syncronisation of 
mate pair reads between two samples, 
often involving arranging reads in 
identical orders and/or removal of reads 
without a mate pair

3 0 3 3 0

Primer trimming Trimming of PCR primers 66 8 15 17 0

Reverse 
complementation

Reverse complementing the sequences in 
a pool

7 3 2 2 0

Sequence conversion Converting sequences from fastq to fasta 3 0 2 3 0

Length trimming The removal of bases from either or both 
ends of sequences in a pool, either the 
removal of a fixed number of bases 
or the removal of a variable number 
of bases to reduce sequences to a 
standard length

10 3 6 7 0

Pair concatenation Concatenating mate pair reads into a single 
contig (where reads don't overlap)

8 4 4 4 0

Assembly The assembly of reads into contigs, applied 
when more than one pair of overlapping 
fragments have been metabarcoded

6 0 4 4 0

Degapping Removal of gaps from sequences 1 0 1 1 0

Sequence 
processing

Dereplication The removal of duplicate reads to retain 
only unique sequences in a pool; 
often the total number of copies of a 
sequence is recorded in the header of 
the retained sequence

58 10 11 19 0

Size sorting The sorting of a fasta file according to a size 
annotation in the header

10 2 3 4 0

Filtering Quality filtering Removal and/or trimming of sequences 
from a pool based on quality 
information. Also often converts from 
fastq to fasta.

81 11 20 27 0

Similarity filtering Removal of sequences based on similarity to 
an alignment, either based on sequence 
identity or alignment position

9 1 4 4 0

Length filtering The removal of sequences from a pool 
that are less than, more than, or fall 
within or outside of a specified length 
threshold or thresholds

54 21 17 23 0

(continuous)
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Task group Task Description

Number 
of papers 
reporting 
task

Number 
of papers 
not 
reporting 
software

Total 
number 
of 
software 
tools

Total 
number 
of 
software 
functions

Number 
of papers 
performing 
manually

Preclustering Reduction of sequence variation in a 
dataset prior to further processing -  a 
form of denoising

12 1 3 6 0

Denoising The removal of reads containing putative 
PCR or sequencing errors based on 
statistical assessment

18 1 8 8 0

Normalisation A process by which the number of 
sequences for each of a set of samples 
is reduced where necessary such that 
the output set of samples all have 
the same number of sequences while 
maintaining the relative frequencies 
of OTUs

2 0 1 1 1

Chimera filtering The filtering of putative chimeric assemblies 
from a pool of mate paired reads

63 4 6 16 1

Translation filtering Removal of sequences from a set of 
sequence based on their translation, 
usually removing sequences with 
inframe stop codons or frameshifts due 
to erroneous indels or substitutions 
caused by sequencing errors

22 3 11 12 0

Frequency filtering Removal of sequences based on their 
frequency in a pool

51 37 11 15 1

Taxonomy filtering Removal of sequences based on an assigned 
taxonomy or a taxonomic classification

9 5 1 1 1

Mistag filtering Removal of sequences based on putative 
tagging errors

3 1 1 1 0

Data 
generation

OTU delimitation The grouping of a set of sequences into 
OTUs by some method

84 5 12 22 0

OTU mapping The mapping of sequences to OTUs to 
provide read counts for each OTU

30 3 7 11 0

Uncurated 
taxonomic 
assignment

The assignment (identification or 
classification) of taxonomy to OTUs 
using a global uncorated reference 
database (e.g., GenBank, BOLD)

55 2 11 13 0

Reference taxonomic 
assignment

The assignment (identification or 
classification) of taxonomy to OTUs 
using a purpose- built and/or specially 
curated reference set of sequences

60 9 18 23 1

Note: Tasks are grouped into four groups by broad purpose, and a detailed definition of each task is given along with summary statistics of the 
implementation of each task across the 111 papers. For a list of the software used for each task, Table S1 is an expanded version of this table.

tasks were employed for the purposes of comparison of pipelines, 
we recorded that pipeline that the authors concluded to be empir-
ically superior, or from which the authors used the output data for 
subsequent analysis. A detailed description of the systematic pro-
cessing of methods is described in the Appendix S1.

For each of the bioinformatic tasks identified across the papers, 
we calculated (i) the number of papers implementing the task, (ii) 
the task's relative position within the pipelines, (iii) the information 
reported on the software, version and parameters used, and (iv) the 
homogeneity in the software tools used to implement the task. We 

assessed homogeneity by calculating two indices, the software ho-
mogeneity rate and the software dominance rate. Software homo-
geneity rate for a given task (t) in a given year (y) was calculated as:

where s is the number of different software tools used and p is the 
number of papers. The software dominance rate was similarly cal-
culated as:

1 −

Syt

Pyt

TA B L E  1  (Continued)
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F I G U R E  1  Year of publication of the 
articles in the core papers set. Bar fills 
and numbers refer to the number of 
articles within each research aim category. 
Note that only articles indexed by Web 
of Science by 3rd November 2020 were 
included
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where n is the number of papers for a given task in a given year that 
used the most common software tool for that task in that year. Finally, 
we also summarised temporal trends in both the reporting and soft-
ware heterogeneity of each task.

3  |  RESULTS AND DISCUSSION

3.1  |  Diversity of bioinformatic methods

The 111 selected papers were published in 36 different journals with 
a broad focus on ecology and molecular ecology. There has been a 
steady increase in the number of papers published in this domain 
over time (Figure 1). The earliest year of publication was 2011, but 
77% of all papers were published in the last 4 years (2017– 2020, 
n = 86, Figure 1). Almost all papers studied invertebrate commu-
nities (n = 108). Forty- five papers were focussed on terrestrial 
communities, 31 on freshwater, 30 on marine and five on parasite 
communities collected from a host vertebrate (see Table S2 for all 
the details on the core papers set).

Despite a clear trend for increased use of wocDNA COI metabar-
coding, the field remains in a relatively early stage of implementation, 
reflected in the fact that in half of all papers (n = 56, n = 38 in the last 
4 years) metabarcoding was undertaken as a proof- of- concept and 
the authors primarily discussed the feasibility of this method for the 
studied ecological system. Only 25 papers considered the sample 
sizes and metabarcoding procedures sufficiently rigorous to answer 
ecological questions. Thirty papers were primarily methodological, 

assessing the influences of primer choice, laboratory protocols and/
or sequencing methods. However, within the methodological cat-
egory, no paper solely studied the effect of bioinformatic pipeline 
choices. Indeed, only eight out of the 111 papers clearly stated that 
they compared different tools for the same task, despite the use 
of 116 software tools (i.e., discrete pieces of software or functions 
within software packages) in our final count. These results illustrate 
the timely nature of this review, highlighting the inconsistent im-
plementation of bioinformatic methods, in contrast to the relative 
maturity and harmonisation of field and laboratory methodologies.

3.2  |  High heterogeneity in tasks and pipelines

The variety of bioinformatic pipelines reported across the 111 papers 
employed 108 unique pipelines, that is, sets of bioinformatic tasks 
carried out in a specific sequence. Three pipelines were used twice; 
in two of these cases, a group of authors replicated their pipeline 
exactly, in the other case the pipeline as reported consisted solely of 
a single step of searching raw reads against a reference set. Although 
some of these pipelines were similar, with minor modifications to 
the order, or the addition/removal of a few tasks, the heterogene-
ity of pipelines is remarkable. There was also high heterogeneity in 
the number of tasks implemented within each pipeline, ranging be-
tween 1 and 18 tasks, with half of the articles reporting fewer than 
nine distinct bioinformatic tasks (Figure 2a). There was no particular 
trend in the number of tasks implemented over time (Figure 2b). The 
order in which these tasks were implemented also differed greatly 
(Figure 2c), although there was a tendency for certain tasks to be 
performed within similar general stages within pipelines, that is, read 
preparation- based tasks tend to be implemented at the initial steps 

n

Pyt
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of the pipelines, followed by filtering- based tasks and data genera-
tion tasks (Figure 3).

Heterogeneity in the sequence of tasks may reflect the care-
ful design and adaptation of bioinformatic procedures within each 
study to the type and structure of sample and sequence data and/
or the specific research question, rather than the simple duplication 
of previously published pipelines. However, high heterogeneity may 
equally result from the omission of important tasks or their inap-
propriate implementation within the pipelines, and so result in low 
comparability, integration and replication across studies. One clear 
example of this is associated with the Filtering tasks of removal of 
erroneous sequence reads. Denoising (i.e., the removal of sequenc-
ing errors based on models of error frequency parameterised by 
between- sequence similarity, error sensitivity and/or relative fre-
quency), was employed in just 18 studies and its relative position 
within the pipelines was highly variable (see Table 1 and Figure 3). 
While some sequencing errors will be disregarded during OTU clus-
tering, failure to incorporate denoising can lead to false OTUs and 

thus OTU inflation (Shum & Palumbi, 2021). While in metabarcoding 
literature denoising and OTU clustering are seen as mutually exclu-
sive procedures, the high intraspecific diversity of COI means that 
employing both tasks in a complementary and comparative frame-
work can be extremely informative, and it is in fact a novel promising 
area for COI metabarcoding (see e.g., Antich et al., 2021; Arribas, 
Andújar, Bidartondo, et al., 2021; Arribas et al., 2021; Brandt et al., 
2021). Furthermore, the trend towards examining haplotypic varia-
tion in metazoan wocDNA metabarcoding through use of amplicon 
sequence variants (ASVs, Callahan et al., 2017) requires minimising 
the number of spurious sequences, relying on stringent filtering such 
as denoising. Similarly, filtering to remove sequences with low copy 
number (that are often considered highly likely to be erroneous) was 
reported in only half (n = 57) of the studies, despite being generally 
recommended (Calderón- Sanou et al., 2020; Ficetola et al., 2017) 
and a critical step for reducing spurious sequences surviving de-
noising including nuclear mitochondrial (NUMT, Lopez et al., 1994) 
copies (Andújar et al., 2021). It should be noted that while many task 

F I G U R E  2  Bioinformatic pipelines implemented by the core papers set. (a) Frequency distribution of the number of tasks by study, (b) 
Number of tasks by study against the year of publication, with best fit regression line in blue with shaded 95% confidence intervals around 
the line. Slight horizontal jitter added to points to better show density. (c) Network diagram of tasks and different pipeline routes through 
these tasks. All pipelines start and end on the respective orange nodes. All other nodes are coloured according to the four main categories 
of bioinformatic tasks; red for read preparation tasks, blue for sequence processing, green for filtering and purple for data generation tasks. 
Arrows link tasks performed consecutively, with direction of arrow showing order of tasks. Thickness of arrows shows relative frequency 
of pairs of consecutive tasks. Arrows coloured orange are the top 10% of consecutive task pairs by relative frequency; note that while this 
illustrates a possible complete pipeline from Start to End, this “average” pipeline is not in fact performed by any of the papers assessed by 
this review
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absences are cases of underimplementation, some may also be un-
derreporting (see below).

3.3  |  Infrequent adaptation of pipelines to COI

The COI locus differs from many other metabarcoding loci (e.g., 
18S, 16S, 12S, ITS) in that it is a protein coding gene, imparting 
strict expectations of amplicon sequence read properties that can 
be exploited in metabarcoding bioinformatics (Andújar, Arribas, Yu, 
et al., 2018). However, the adaptation of pipelines to this fragment 
are in general rarely implemented in the papers of the core set. 
For example, only 22 papers (20%) used amino acid translations 
to identify erroneous sequences (“translation filtering”), using 11 
different software tools for the task. The reason for low implemen-
tation of translation filtering is probably that none of the major 
metabarcoding software packages include functions for trans-
lation filtering and that the available methods are limited. Those 
papers that carry out translation filtering do so by using one of 
three main approaches: (i) sequences are viewed and translated in 

a GUI application such as Geneious (https://www.genei ous.com) 
or MEGA (Kumar et al., 2018), and those with stop codons manu-
ally removed, (ii) sequences are processed through a custom script, 
some of which are available on github but none of which are used 
by research groups separate from the author, and (iii) sequences 
are aligned against references using MACSE (Ranwez et al., 2011) 
and those containing indels or stop codons are removed. The first 
option is time consuming and prone to human error, and custom 
scripts are challenging to document and maintain for a wider num-
ber of users. While MACSE is the most frequent single approach, it 
is computationally efficient only for small data sets. There may be 
some potential in the recent coil R package (Nugent et al., 2020) 
that uses Hidden Markov Models to identify and filter translation- 
based errors and appears to scale well to large data sets, although 
the R implementation presents a slight barrier to efficient inclusion 
in pipelines. Furthermore, the majority of translation filtering ap-
proaches are based solely on removing stop codons, while there 
may be other potential avenues for filtering based on amino acid 
translation. The extent to which expectations for protein structural 
properties can be applied to metabarcoding sequences for filtering 

F I G U R E  3  Violin plot of standardised task position within pipelines. Increasing x- axis position denotes later placement of task within 
pipelines, vertical dashed lines denote 25%, 50% and 75% of the way through the pipeline, respectively. Tasks are separated into task groups 
and ordered within task group by mean standardised pipeline position. Points denote task positions where tasks occurred too infrequently 
to compute density profile for violin plots. Values report the total number of papers implementing each task
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other nonsynonymous errors has been poorly explored (but see 
Antich et al., 2021; Turon et al., 2020). It should be further noted 
that studies covering a wide range of metazoa and wishing to em-
ploy translation filtering may need to employ multiple different 
translation tables, which would require sequences to be taxonomi-
cally sorted prior to this step and then filtered separately, adding 
further complexity and potential for error.

In addition to the potential of amino acid translation, the 
protein coding nature of COI leads to relatively stricter expec-
tations of amplicon length. However, only half (n = 54) of papers 
reported using length filtering, despite this being a relatively triv-
ial procedure and with functions available in all metabarcoding 
software packages and as options in many more software tools. 
There may be some underreporting here; given the implementa-
tion of a length filtering parameter in many software tools that 
have a different primary purpose, authors may not have explicitly 
reported that length thresholds had been applied as part of a 
different procedure (note that we recorded when a single tool 
was reported to have fulfilled multiple tasks). Despite length fil-
tering being widely available, and the relative algorithmic sim-
plicity of implementation, there are no length filtering tools 
that allow for specification of thresholds outside of a simple 
minimum- maximum range, despite the internal barcode region of 
protein coding genes generally being expected to vary in length 
only by multiples of three bases. While trivial to implement this 
programmatically for an experienced bioinformatician, this lack 
of straightforward user- friendly availability presents a barrier 
to appropriate threshold implementation by those with less 
experience.

3.4  |  Severe underreporting and 
increasing heterogeneity in the tools used for 
bioinformatic tasks

Of the 30 bioinformatic tasks identified (see Table 1 for a descrip-
tion of the tasks), only 11 were implemented in more than half of 
the papers (n < 55) (Figure 3). Quality filtering (n = 92) and OTU 
delimitation (n = 89) were the tasks most reported. Some of the less 
reported tasks were those associated with uncommon bioinformatic 
requirements of metabarcoding data, such as assembly or degap-
ping; others have become redundant with modern computational 
power, such as preclustering. Low reporting of such tasks is prob-
ably an accurate reflection of rare implementation; however, there 
are many other tasks that are fundamental in metabarcoding bio-
informatics but are poorly reported. For example, primer trimming 
was only reported by just over half of the papers (n = 67), yet is a 
completely necessary step. Similarly, adapter trimming was under-
reported (n = 21); while it is likely that in the majority of cases this 
is implemented by sequencing facilities prior to the authors receiv-
ing data, its reporting, including parameters and tools used, is fun-
damental to verify stringency of the read preparation procedures. 
The mapping of by- sample reads to OTUs was reported by only one 
third (n = 30) of the papers that employed OTU delimitation, despite 
this being a necessary step for the production of ecological data for 
downstream analysis. Furthermore, OTU mapping is not a trivial 
step; the level of filtering/processing performed on the reads used 
for mapping (as opposed to filtering/processing performed on the 
sequences used for OTU delimitation), and the similarity threshold 
and tie- breaking algorithm employed to assign reads to OTU clusters 

F I G U R E  4  Plots summarising the reporting of three key aspects of bioinformatic tools (software name, version and parameters) by 
the core papers. (a). Venn diagram shows the number of papers fully reporting each detail, that is, giving the software used for every task 
reported, and giving the parameters and version for each task where software is given; 86 papers reported at least one of the three details 
for all steps, 25 further papers failed to fully report all three details in all steps. (b) Bar chart details the proportion of papers employing a 
specific task that failed to report the software used for that task, with longer bars denoting a greater proportion of papers not reporting 
software for that specific task
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could all substantially affect the community data generated. The ac-
curate reporting of this step is important to assess the validity of 
a pipeline, its comparability across studies, and/or its ability to be 
reproduced.

In addition to the clear underreporting of tasks within the 
pipelines as discussed above, the reporting of the bioinformatic 
tools and parameters used for those tasks cited in the papers 
was also very poor (Table 1). Only 21 of the 111 studies reported 
software name, version and parameters used for all of the bio-
informatic tasks implemented, and 25 failed on all three counts 
(Figure 4a). When considering the degree of underreporting by 
task (Figure 4b), the most underreported software were used 
for some of the most perfunctory tasks (e.g., frequency filter-
ing, length filtering, dereplication) that can be easily reproduced 

using many equivalent tools. Nonetheless, there remains relatively 
widespread underreporting, and this has remained unchanged 
over time (Figure 5b).

Within the reported software, we identified 93 independent 
pieces of software used in metabarcoding bioinformatic pipelines 
(Table S3), of which 27% (25) were software packages. When tak-
ing into account distinct functions within packages, a total of 169 
unique software tools were recorded; however, this is probably an 
inaccurate picture given low reporting rates of functions used within 
software packages. There is a clear increase in the number of dif-
ferent software and software functions employed across all papers 
over time (Figure 5a). Examining the diversity of software used 
within tasks over time, controlling for the number of papers pub-
lished, there is limited improvement in homogeneity and a decrease 

F I G U R E  5  Consistency in software reporting and use over time. (a) The total number of unique software functions reported across all 
papers for each year of publication. (b) For each paper, the proportion of the total number of bioinformatic tasks for which the software used 
for a task was not reported. (c) The software homogeneity rate, calculated only when more than one paper reported a task in a given year. A 
value of 1 means all papers used the same tool for a given task in a given year. (d) The software dominance rate, calculated only when more 
than one paper reported a task in a given year. A value of 1 means all papers used the same tool for a given task in a given year. (b– d) Best 
fit regression lines are shown in blue with shaded 95% confidence intervals around the line. Horizontal jitter added to points to illustrate 
density within years; (c and d) colours denote different tasks, see Figure S1
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in dominance of software (Figure 5c,d). Given that the number of 
metabarcoding publications is increasing year- on- year, there is thus 
a concomitant increase in the diversity of software used for a given 
task, and previously commonly used software are being used less 
(Figure 5c,d). These trends reflect that while new software tools are 
constantly being made available for metabarcoding, uptake is not 
consistent across the field and while some researchers use more 
recent tools, many researchers continue to use older methods, di-
versifying the field.

3.5  |  Toward a bioinformatic harmonisation of COI 
metabarcoding for metazoan wocDNA samples

Our results show that the increasing use of wocDNA COI metabar-
coding for metazoan diversity is characterised by a clear absence 
of bioinformatic harmonisation, and the temporal trends show lit-
tle change in this situation. The reviewed literature showed (i) high 
heterogeneity across pipelines, tasks and tools used, (ii) limited or 
no adaptation of bioinformatic procedures to the nature of the COI 
fragment, and (iii) a worrying underreporting of tasks, software and 
parameters.

The development of metabarcoding as a method for commu-
nity ecology began with microbial studies over a decade ago, which 
have revealed the extensive diversity of bacteria and archaea on our 
planet and demonstrated the potential of metabarcoding for global 
biodiversity syntheses (Bates et al., 2013; Thompson et al., 2017). 
Although the integration and meta- analysis of microbial community 
data from independent studies is still challenging (e.g., Ramirez- 
Gonzalez et al., 2013), the success of international consortia such 
as the Earth Microbiome Project (EMP, Gilbert et al., 2010, 2014) 
has promoted the development of a harmonised framework for data 
generation and analyses within microbial eDNA research (see e.g., 
Tedersoo et al., 2015).

Through the adaptation of the microbial metabarcoding method 
to wocDNA samples, specific protocols to sample, sort and enrich 
community samples for wocDNA metabarcoding have been devel-
oped, targeting different taxonomic fractions and types of sam-
ples (e.g., Andújar, Arribas, Gray, et al., 2018; Arribas et al., 2016; 
Creedy et al., 2019; Elbrecht & Leese, 2017; Fonseca et al., 2010; 
Yu et al., 2012). Additionally, recent efforts to adapt and optimise 
existing methods are increasing efficiency and versatility, for exam-
ple through nondestructive DNA extraction techniques that retain 
specimens for morphological vouchering (Marquina et al., 2019; 
Nielsen et al., 2019), or library preparation techniques tailored to 
metazoan samples (Yang et al., 2021). Although wocDNA COI me-
tabarcoding remains in an expansive phase of development, stan-
dardisation in field and laboratory methods are emerging. This is in 
part boosted by collaborative initiatives such as the BIOSCAN initia-
tive and its regional extensions (e.g., BIOALPHA), the Kruger Malaise 
Program, SITE- 100, the Insect Biome Atlas Project, LIFEPLAN, and 
iBioGen (Arribas, Andújar, Bidartondo, et al., 2021; Arribas, Andújar, 
Salces- Castellano, et al., 2021).

In contrast, there has been little advance in the development 
and validation of best practices associated with the bioinformatic 
processing of wocDNA COI metabarcoding data (but see Yang et al., 
2021 for error reduction). Outside of taxonomic assignment tasks 
for which adaptations and parameterization for using the COI bar-
code fragment have been further discussed (see e.g., Hleap et al., 
2021), the discussion of customising or parameterising tools for the 
purposes of working with wocDNA COI metabarcoding is very rare 
(but see e.g., Andújar, Arribas, Gray, et al., 2018; Andújar et al., 2021; 
Antich et al., 2021), with most papers simply reporting using tools 
with default settings. Our review has revealed heterogeneity in the 
number of tasks, the order of these within pipelines, and the tools 
used to implement them, along with a lack of even basic adaptations 
to the COI metabarcode for most of the papers. The majority of avail-
able software and resources for metabarcoding bioinformatics are 
still those that have been developed around the 16S rRNA gene (the 
primary target for microbiome metabarcoding), including the most 
popular software packages (e.g., USEARCH) and sets of wrapper 
scripts (e.g., QIIME, OBItools). While in many cases these methods 
may carry over to COI without issue, we observe very few studies 
that report consideration or analysis that assesses or validates the 
suitability of software choices for COI. These issues suggest that the 
expansion of wocDNA COI metabarcoding is proceeding at a pace 
and manner that could lose sight of or simply ignore the challenges 
inherent in producing high- quality data and reproducible methods 
(Baker et al., 2016; Zinger et al., 2019), and lose out on the potential 
for exploiting the benefits of the COI marker for wocDNA metabar-
coding of Metazoa.

DNA metabarcoding has broad multidisciplinary potential, as 
demonstrated by the expansion in use of metazoan wocDNA COI 
metabarcoding among users from very diverse backgrounds. The di-
versity of applications of metabarcoding requires the concomitant 
bioinformatic techniques to be flexible and adaptable, and the field 
remains under active development. Thus it would not be productive 
to attempt to prescribe pipelines, tasks or even software tools in the 
name of standardisation, as there is no one- size- fits- all approach in 
metabarcoding. However, some degree of harmonisation is required 
to ensure quality, reproducibility and potential integration in meta-
studies (Tedersoo et al., 2015). Additionally, the absence of a har-
monised framework of bioinformatic processing can act as a barrier 
for potential new users (Liu et al., 2020), hampering the growth of 
the field. To these ends, we thus propose a set of recommendations 
that we believe all researchers in the field should consider when de-
signing and reporting their wocDNA COI metabarcoding bioinfor-
matics pipeline, with the hope that they will catalyse harmonised 
implementation.

Fully report all tasks, software, software versions and param-
eters used, even if just the defaults. Our results show that under-
reporting is a recurrent problem. Comprehensive reporting of the 
tasks, pipelines and software used is essential for further integrating 
results in future reviews or meta- analyses (Tedersoo et al., 2015). 
Furthermore, care should be taken to report not just the name of 
the software package, but also the exact function, and if wrapper 
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scripts are used then the underlying functions should be reported. 
Considering the trade- off with current constrictions for manuscript 
length, this could be achieved by the inclusion of a supporting table 
following the STAR- METHODs philosophy (Marcus, 2016), where 
task reference, order within the pipeline and software used are in-
cluded. Note that the task lexicon and software lists compiled in this 
review (see Table 1) are a very useful resource for this purpose. This 
reporting effort for all the wocDNA COI metabarcoding will pro-
mote rigour and robustness with an intuitive, consistent framework 
that makes reporting easier for the author and replication easier for 
the reader.

Implement filtering tasks such that spurious sequences are suf-
ficiently removed to meet the assumptions of the research ques-
tion. The quality of metabarcoding results is likely to depend most 
on the appropriate inclusion of filtering into a pipeline (Calderón- 
Sanou et al., 2020; Elbrecht et al., 2018; Zinger et al., 2019), so 
proper implementation of filtering tasks are critical for robust and 
harmonised use of COI metabarcoding. In metabarcoding, real ampl-
icon sequence variants (ASVs, Callahan et al., 2017) amplified from 
target genes are inherently accompanied by spurious sequences, 
arising from multiple sources. Indeed, taxonomic inflation is a re-
curring issue demonstrated in communities with known haplotype 
composition (Creedy et al., 2020; Elbrecht et al., 2018). This can be 
exacerbated for mitochondrial markers like COI, due to the coampli-
fication of NUMTs and other nonauthentic ASVs that are missed by 
denoising and require stringent, optimised filtering based on read 
abundances such as that implemented by the metaMATE software 
(Andújar et al., 2021). To ensure quality and reproducibility, metabar-
coding studies should consider implementing the six most common 
filtering approaches, that is, quality, length, Chimera, translation, 
and frequency filtering, plus denoising. For each of these tasks, ap-
propriate thresholds should be considered, implemented and fully 
reported to a level that ensures reproducibility (see e.g., Antich et al., 
2021). Given the demonstrated importance of these tasks for most 
wocDNA metabarcoding studies, if any are not employed by a study 
the omission should be explained.

Adapt pipelines to the COI fragment. Suitable adaptations in-
clude read processing and filtering steps that leverage evolution-
ary properties of the protein coding nature of this fragment, or 
determining appropriate parameters for tools originally designed 
for other DNA regions. Some recent advances have been made in 
filtering tasks (metaMATE, Andújar et al., 2021; coil, Nugent et al., 
2020; entropy- based denoising, Turon et al., 2020; Antich et al., 
2021) but further development in these promising areas is essential 
to fully exploit the potential of the COI gene for metabarcoding. As 
mentioned previously, there are no tools that enable simple length 
filtering variation that accounts for codon- level insertion or deletion. 
To our knowledge there is limited work exploring the extent to which 
protein structure inference might allow identification of erroneous 
sequences: for example the SOAPbarcode pipeline (Liu et al., 2013) 
includes a script that filters sequences based on translation hydro-
philicity, but this is not comprehensively documented or discussed 
in the associated publications. Computation of protein structural 

properties is relatively trivial to perform, and seems like a fertile 
ground for novel development of filtering tools for protein coding 
markers.

For each task, consider all software available and try to select 
the most appropriate tool(s). This can only be approached with suf-
ficient information about available software, and to this end we in-
clude a list of all software used for each task within Table S1, and 
Table S3 includes links to documentation and publications. The se-
lection of the most appropriate tool is not always straightforward, 
but we suggest considering (i) the extent to which the tool was de-
signed for the intended barcode region, purpose or data set, (ii) the 
detail of available documentation and explanation to ensure a tool 
performs as expected, (iii) the availability and flexibility of options 
to appropriately apply the tool, (iv) the frequency of use of a tool in 
other studies with similar research aims, and (v) all else being equal, 
the simplest approach. Ideally, where multiple approaches exist, 
reasonable comparison between key methods should take place to 
fully understand the potential variation in conclusions that might 
arise from different bioinformatic choices, and the results of these 
comparisons should be reported. This is particularly the case when 
considering alternative, conceptually distinct algorithms for more 
bioinformatically complex tasks, such as denoising and OTU delim-
itation. The development of software packages and open access 
platforms integrating a catalogue of common bioinformatic tools, 
such mBRAVE (http://www.mbrave.net/), may play a fundamental 
role towards a proper selection and harmonisation of the software 
used. However, software choices should be made on the basis of ap-
propriateness and usefulness, rather than simply ease of availability 
and implementation due to inclusion in these packages/platforms. 
Choice of software tools and pipeline design should be careful not 
to be biased by tools and pipelines designed for nonmitochondrial 
loci (Antich et al., 2021).

Verify the compatibility of the tasks within a pipeline, especially 
with respect to task order. It is important to ensure that the assump-
tions of one task have not been violated by upstream processing; 
for example, UNOISE denoising employs a model of error rates in 
Illumina sequencing, and if errors have been removed by prior length 
or frequency filtering this model may not accurately fit to the data. 
Further, linked processes should be compatible: for instance, if OTU 
delimitation is based on a linkage algorithm such as swarm (Mahé 
et al., 2015), it is inappropriate to employ a simple similarity- based 
mapping method to assign reads to the resultant OTUs.

Aside from these recommendations, we also urge researchers 
to make data publicly available, both raw reads and final ASV and/
or OTU sequences. Raw read data sets will become an invaluable 
resource for future work integrating many wocDNA metabarcoding 
studies across spatial and temporal scales, with continuing devel-
opment and improvement of bioinformatic pipelines allowing for 
forward- compatibility of the data as analytical tools continue to 
evolve. Uploading ASV and/or OTU sequences, even with incom-
plete taxonomy, improves the capability of methods for taxonomic 
assignment that draw on these resources and provides fertile data 
sets for future development of bioinformatic methods.

http://www.mbrave.net/
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4  |  CONCLUSIONS

The past decade has seen rapid growth in the development, test-
ing and use of wocDNA COI metabarcoding. Much effort has been 
expended in the development of laboratory, sequencing and bioin-
formatic methodologies for wocDNA COI metabarcoding and for 
metabarcoding as a whole. However, while much progress has been 
made towards harmonisation of lab and sequencing methods, bio-
informatic processes have remained a tangle of varying software, 
pipelines and theoretical approaches, often suffering from underre-
ported detail. This diversity allows for versatility, especially for those 
who are well informed and experienced in bioinformatics and able 
to pick and choose the appropriate approach. However, choosing 
from the range of approaches could easily hinder new applications of 
metabarcoding for researchers coming from a limited bioinformatic 
background, and high heterogeneity can stymie the potential for fu-
ture reviews and meta- analyses. Our review, which is the first evalu-
ating the state of the art on this topic, highlights that this danger is 
clearly present in the field of metazoan wocDNA COI metabarcod-
ing. The results of our assessment and the recommendations derived 
from it may help to improve bioinformatic harmonisation and thus 
the long- term integrative potential of wocDNA COI metabarcoding 
for biodiversity science.
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