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Abstract.—Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an
important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in
driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution
fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced
models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However,
these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring
the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits
involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which
lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and
phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values
across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which
trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages
interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from
a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and
geography perform better than other models. The matching competition model is an important new tool for studying the
influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step
toward a better integration of interspecific interactions in many ecological and evolutionary processes. [Adaptive radiation;
Anolis; community phylogenetics; interspecific competition; maximum likelihood; phylogenetic comparative methods; trait
evolution.]

Interactions between species can be strong selective
forces. Indeed, many classical evolutionary theories
assume that interspecific competition has large impacts
on fitness. Character displacement theory (Brown and
Wilson 1956; Grant 1972; Pfennig and Pfennig 2009),
for example, posits that interactions between species,
whether in ecological or social contexts, drive adaptive
changes in phenotypes. Similarly, adaptive radiation
theory (Schluter 2000) has been a popular focus of
investigators interested in explaining the rapid evolution
of phenotypic disparity (Grant and Grant 2002; Losos
2009; Mahler et al. 2013; Weir and Mursleen 2013),
and competitive interactions between species in a
diversifying clade are a fundamental component of
adaptive radiations (Schluter 2000; Losos and Ricklefs
2009; Grant and Grant 2011).

Additionally, social interactions between species,
whether in reproductive (Gröning and Hochkirch 2008;
Pfennig and Pfennig 2009) or agonistic (Grether et al.
2009, 2013) contexts, are important drivers of changes
in signal traits used in social interactions. Several
evolutionary hypotheses predict that geographical
overlap with closely related taxa should drive divergence
in traits used to distinguish between conspecifics and
heterospecifics (e.g., traits involved in mate recognition;
Wallace 1889; Fisher 1930; Dobzhansky 1940; Mayr
1963; Gröning and Hochkirch 2008; Ord and Stamps
2009; Ord et al. 2011). Moreover, biologists interested
in speciation have often argued that interspecific
competitive interactions are important drivers of
divergence between lineages that ultimately leads

to reproductive isolation. Reinforcement (Dobzhansky
1937, 1940), for example, is often thought to be an
important phase of speciation (Grant 1999; Coyne and
Orr 2004; Rundle and Nosil 2005; Pfennig and Pfennig
2009) wherein selection against hybridization leads to a
reduction in interspecific mate competition as a result
of concomitant divergence in traits involved in mate
recognition.

In addition to the importance of interspecific
competition in driving phenotypic divergence between
species, competitive interactions are also central to
many theories of community assembly, which posit that
species with similar ecologies exclude each other from
the community (Elton 1946). In spite of the importance
of interspecific competition to these key ecological
and evolutionary theories, the role of competition in
driving adaptive divergence and species exclusion from
ecological communities has been historically difficult to
measure (Losos 2009), because both trait divergence and
species exclusion resulting from competition between
lineages during their evolutionary history have the
effect of eliminating competition between those lineages
at the present (i.e., the contemporary distribution of
traits hold a signature of the “ghost of competition
past,” Connell 1980). Community phylogeneticists have
aimed to solve part of this conundrum by analyzing the
phylogenetic structure of local communities: assuming
that phylogenetic similarity between two species is a
good proxy for their ecological similarity, competitive
interactions are considered to have been more important
in shaping communities comprising phylogenetically
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(and, therefore, ecologically) distant species (Webb et al.
2002; Cavender-Bares et al. 2009). However, there is
an intrinsic contradiction in this reasoning, because
using phylogenetic similarity as a proxy for ecological
similarity implicitly (or explicitly) assumes that traits
evolved under a Brownian model of trait evolution,
meaning that species interactions had no effect on trait
divergence (Kraft et al. 2007; Cavender-Bares et al. 2009;
Mouquet et al. 2012; Pennell and Harmon 2013).

More generally, and despite the preponderance
of classical evolutionary processes that assume that
interspecific interactions have important fitness
consequences, existing phylogenetic models treat
trait evolution within a lineage as independent from
traits in other lineages. For example, in the commonly
used Brownian motion (BM) and Ornstein–Uhlenbeck
models of trait evolution (Cavalli-Sforza and Edwards
1967; Felsenstein 1988; Hansen and Martins 1996), once
an ancestor splits into two daughter lineages, the trait
values in those daughter lineages do not depend on
the trait values of sister taxa. Some investigators have
indirectly incorporated the influence of interspecific
interactions by fitting models where evolutionary rates
at a given time depend on the diversity of lineages at
that time (e.g., the “diversity-dependent” models of
Mahler et al. 2010; Weir and Mursleen 2013). While these
models capture some parts of the interspecific processes
of central importance to evolutionary theory, such as
the influence of ecological opportunity, they do not
explicitly account for trait-driven interactions between
lineages, as trait values in one lineage do not vary
directly as a function of trait values in other evolving
lineages.

Recently, Nuismer and Harmon (2015) proposed a
model where the evolution of a species’ trait depends
on other species’ traits. In particular, they consider a
model, which they refer to as the model of phenotype
matching, where the probability that an encounter
between two individuals has fitness consequences
declines as the phenotypes of the individuals become
more dissimilar. The consequence of the encounter
on fitness can be either negative if the interaction is
competitive, resulting in character divergence (matching
competition, e.g., resource competition), or positive if
the interaction is mutualistic, resulting in character
convergence (matching mutualism, e.g., Müllerian
mimicry). Applying Lande’s formula (Lande 1976)
and given a number of simplifying assumptions—
importantly that all lineages evolve in sympatry and that
variation in competitors’ phenotypes does not strongly
influence the outcome of competition—this model yields
a simple prediction for the evolution of a population’s
mean phenotype.

Here, we develop inference tools for fitting a
simple version of the matching competition model
(i.e., the phenotype matching model of Nuismer and
Harmon incorporating competitive interactions between
lineages) to combined phylogenetic and trait data.
We begin by showing how to compute likelihoods
associated with this model. Next, we use simulations to

explore the statistical properties of maximum likelihood
(ML) estimation of the matching competition model
(parameter estimation as well as model identifiability).
While the inclusion of interactions between lineages is
an important contribution to quantitative models of trait
evolution, applying the matching competition model to
an entire clade relies on the assumption that all lineages
in the clade are sympatric. However, this assumption will
be violated in most empirical cases, so we also developed
a method for incorporating data on the biogeographical
overlap between species for the matching competition
model. We also implemented these biogeographical
tools for the linear and exponential diversity-dependent
trait models of Weir and Mursleen (2013), wherein the
evolutionary rate at a given time in a tree varies as a
function of the number of lineages in the reconstructed
phylogeny at that time (see also Mahler et al. 2010), so that
rates vary only as a function of the number of sympatric
lineages.

We then fit the model to data from a classical
adaptive radiation: Greater Antillean Anolis lizards
(Harmon et al. 2003; Losos 2009). Many lines of evidence
support the hypothesis that resource competition is
responsible for generating divergence between species
in both habitat use (e.g., Pacala and Roughgarden
1982) and morphology (Schoener 1970; Williams 1972;
see review in Losos 1994). Thus, we can make an a
priori prediction that model comparison will uncover
a signature of competition in morphological traits that
vary with habitat and resource use. Given the well-
resolved molecular phylogeny (Mahler et al. 2010, 2013)
and the relatively simple geographical relationships
between species (i.e., many species are restricted to single
islands, Rabosky and Glor 2010; Mahler and Ingram
2014), the Greater Antillean Anolis lizards provide a good
test system for exploring the effect of competition on trait
evolution using the matching competition model.

METHODS

Likelihood Estimation of the Matching Competition Model
We consider the evolution of a quantitative trait

under the matching competition model of Nuismer
and Harmon (2015) wherein trait divergence between
lineages will be favored by selection. We make the
assumption that the outcome of competitive interactions
is similar between all members of an evolving clade
rather than sensitive to pairwise phenotypic similarity
(i.e., that ! in equation 1 of Nuismer and Harmon
2015 is small). This assumption is crucial, as it ensures
that the evolution of a population’s mean phenotype
is given by a linear model (equation S38 in Nuismer
and Harmon 2015). Importantly, this implies that
the expected distribution of trait values on a given
phylogeny follows a multivariate normal distribution
(Manceau et al., manuscript in preparation), as is the
case for classical models of quantitative trait evolution
(Hansen and Martin 1996; Harmon et al. 2010; Weir and
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Mursleen 2013). In our current treatment of the model,
we remove stabilizing selection to focus on the effect of
competition (see “Discussion” section). Under these two
simplifying assumptions, the mean trait value for lineage
i after an infinitesimally small time step dt is given
by (equation S38 in Nuismer and Harmon 2015 with
"=0):

zi(t+dt)=zi(t)+S(#(t)−zi(t))dt+$dBi (1)

where zi(t) is the mean trait value for lineage i at
time t, #(t) is the mean trait value for the entire
clade at time t, S measures the strength of interaction
(more intense competitive interactions are represented
by larger negative values), and drift is incorporated
as BM $dBi with mean = 0 and variance =$2dt. Note
that when S=0 or n=1 (i.e., when a species is alone),
this model reduces to BM. Under the model specified
by equation (1), if a species trait value is greater (or
smaller) than the trait value average across species in the
clade, the species’ trait will evolve toward even larger (or
smaller) trait values. Since trait values of extinct lineages
were likely similar to trait values of lineages surviving
to the present, we assume that the mean clade value
(and thus, the outcome of competitive interactions) is not
greatly influenced by extinction. We directly assess the
impact of extinction on parameter estimation below and
discuss the strengths and limitations of this formulation
of the matching competition model in the “Discussion”
section.

Given that the expected distribution of trait values
on a phylogeny under the matching competition model
specified in equation (1) follows a multivariate normal
distribution, it is entirely described with its expected
mean vector (made of terms each equal to the character
value at the root of the tree) and variance–covariance
matrix. Nuismer and Harmon (2015) provide the
system of ordinary differential equations describing the
evolution of the variance and covariance terms through
time (their equations 10b and 10c). These differential
equations can be integrated numerically from the root to
the tips of phylogenies to compute expected variance–
covariance matrices for a given set of parameter values
and the associated likelihood values given by the
multivariate normal distribution.

Additionally, to relax the assumption that all of the
lineages in a clade coexist sympatrically, we included
a term to specify which lineages co-occur at any given
time-point in the phylogeny, which can be inferred, for
example, by biogeographical reconstruction. We define
piecewise constant coexistence matrices A, where Ai,j
equals 1 at time t if i and j are sympatric at that time, and
0 otherwise (Fig. 1). The evolution of the trait value for
lineage i is then given by:

zi
(
t+dt

)
=zi

(
t
)
+S

⎛

⎝

⎛

⎝ 1
ni

n∑

l=1

Ai,lzl
(
t
)
⎞

⎠−zi
(
t
)
⎞

⎠dt+$dBi

(2)

FIGURE 1. Illustration of geography matrices (defined for each
lineage at every node and after each dispersal event inferred, e.g., by
stochastic mapping) delineating which lineages interact in sympatry
in an imagined phylogeny. These matrices were used to identify
potentially interacting lineages for the matching competition and
both diversity-dependent models of character evolution (see equations
(3–5) in the main text). Anolis outline from http://phylopic.org
courtesy of Sarah Werning, licensed under Creative Commons.
(http://creativecommons.org/licenses/by/3.0/).

where ni =
∑n

j=1Aij is the number of lineages interacting
with lineage i at time t (equal to the number n of extant
lineages in the reconstructed phylogeny at time t if all
species are sympatric) such that trait evolution is only
influenced by sympatric taxa. When a species is alone,
Ai,i =1, all other Ai,j =0, ni,i =1, and thus equation (2)
reduces to the Brownian model.

We show (Appendix S1 in the Supplementary Material
available on Dryad at http://dx.doi.org/10.5061/dryad.
d670p) that the corresponding system of ordinary
differential equations describing the evolution of the
variance and covariance terms through time is:

dvi,i

dt
=−2S

(
ni −1

)

ni
vi,i +

2S
ni

⎛

⎜⎜⎜⎜⎜⎝

n∑
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l ̸= i

)
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⎞
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+$2 (3a)

dvi,j

dt
=−S

(
ni −1

ni
+ nj −1

nj

)

vi,j +
S
ni

n∑

k =1
k ̸= i

Ai,kvk,j +
S
nj

n∑

l=1
l ̸= j

Aj,lvl,i

(3b)
where vi,i is the variance for each species i at time
t and vi,j is the covariance for each species pair i, j
at time t. Using numerical integration, we solve this
system of ordinary differential equations from the root
of the tree to the tips in order to calculate the values
of the variance–covariance matrix expected under the
model for a given phylogeny and set of parameter values.
Specifically, equations (3a) and (3b) dictate how the
variance and covariance values change through time
along the branches of the tree; at a given branching
event, the variance and covariance values associated
with the two daughter species are simply inherited
from those of the ancestral species. With the expected
variance–covariance matrix at present, we calculate the
likelihood for the model using the likelihood function
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for a multivariate normal distribution (e.g., Harmon et al.
2010). Then, using standard optimization algorithms, we
identify the ML values for the model parameters. The
matching competition model has three free parameters:
$2, S,and the ancestral state z0 at the root. As with
other models of trait evolution, the ML estimate for
the ancestral state is computed through GLS using
the estimated variance–covariance matrix (Grafen 1989;
Martins and Hansen 1997).

We used the ode function in the R package deSolve
(Soetaert et al. 2010) to perform the numerical integration
of the differential equations using the “lsoda” solver,
and the Nelder–Mead algorithm implemented in the
optim function to perform the ML optimization. Codes
for these analyses are freely available on GitHub
(https://github.com/hmorlon/PANDA) and included
in the R package RPANDA (Morlon et al. 2016).

Incorporating Geography into Diversity-Dependent Models
Using the same geography matrix A described

above for the matching competition model (Fig. 1),
we modified the diversity-dependent linear and
exponential models of Weir and Mursleen (2013) to
incorporate biological realism into the models, because
ecological opportunity is only relevant within rather
than between biogeographical regions. The resulting
variance–covariance matrices, V, of these models have
the elements:

Vij =
M∑

m=2
($2

0 +bni)
(

max
(

sij −tm−1,0
)
−max

(
sij −tm,0

))

(4)
for the diversity-dependent linear model, and

Vij =
M∑

m=2
($2

0 ×erni )
(

max
(

sij −tm−1,0
)
−max

(
sij −tm,0

))

(5)
for the diversity-dependent exponential model, where$2

0
is the rate parameter at the root of the tree, b and r are the
slopes in the linear and exponential models, respectively,
sij is the shared path length of lineages i and j from the
root of the phylogeny to their common ancestor, ni is
the number of sympatric lineages (as above) between
times tm−1 and tm (where t1 is 0, the time at the root, M
rep resents the time at the tips, and thus tM is the total
length of the tree) (Weir and Mursleen 2013). When b or
r=0, these models reduce to BM. For the linear version
of the model, we constrained the ML search such that the
term ($2

0 +bni) in equation (3) !0 to prevent the model
from having negative evolutionary rates at any tm. Since
the right-hand parts of equations (4) and (5) become 0
after lineages i and j split, the covariance of lineages
i and j is simply the variance accumulated during the
time between the root of the tree and their most recent
common ancestor.

Simulation-based Analysis of Statistical Properties of the
Matching Competition Model

To verify that the matching competition model can
be reliably fit to empirical data, we simulated trait
data sets to estimate its statistical properties (i.e.,
parameter estimation and identifiability using AICc). For
all simulations, we began by first generating 100 pure-
birth trees using TreeSim (Stadler 2014). To determine
the influence of the number of tips in a tree, we ran
simulations on trees of size n=20, 50, 100, and 150. We
then simulated continuous trait data sets by applying the
matching competition model recursively from the root
to the tip of each tree (Paradis 2012), following equation
(1), assuming that all lineages evolved in sympatry. For
these simulations, we set $2 =0.05 and systematically
varied S (−1.5, −1, −0.5, −0.1, or 0). Finally, we fit the
matching competition model to these data sets using the
ML optimization described above.

To determine the ability of the approach to accurately
estimate simulated parameter values, we first compared
estimated parameters to the known parameters used
to simulate data sets under the matching competition
model (S and $2). We also quantified the robustness
of these estimates in the presence of extinction by
estimating parameters for data sets simulated on birth–
death trees; in addition, we compared the robustness of
the matching competition model to extinction to that of
the diversity-dependent models. These two latter sets of
analyses are described in detail in the Supplementary
Appendix 2 available on Dryad.

To assess the ability to correctly identify the matching
competition model when it is the generating model,
we compared the fit (measured by AICc, Burnham and
Anderson 2002) of this model to other commonly used
trait models on the same data (i.e., data simulated
under the matching competition model). Specifically, we
compared the matching competition model to (i) BM,
(ii) Ornstein–Uhlenbeck/single-stationary peak model
(OU; Hansen and Martin 1996), (iii) exponential time-
dependent (TDexp, i.e., the early burst model, or the
ACDC model with the rate parameter set to be negative,
Blomberg et al. 2003; Harmon et al. 2010), (iv) linear time-
dependent evolutionary rate (TDin, Weir and Mursleen
2013), (v) linear rate diversity-dependent (DDlin, Mahler
et al. 2010; Weir and Mursleen 2013), and (vi) exponential
rate diversity-dependent (DDexp, Weir and Mursleen
2013). These models were fitted using Geiger (Harmon
et al. 2008) when available there (BM, OU, TDexp, TDin),
or using our own codes, available in RPANDA (Morlon
et al. 2016) when they were not available in Geiger
(DDlin, DDexp). With the exception of TDexp, which we
restricted to have decreasing rates through time since the
accelerating rates version of the model is unidentifiable
from OU (Uyeda et al. 2015), we did not restrict the ML
search for the parameters in TDin or DD models.

We assessed the identifiability of other trait models
against the matching competition model by calculating
the fit of this model to data sets simulated under the
same trait models mentioned above. For BM and OU
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models, we generated data sets from simulations using
parameter values from the appendix of Harmon et al.
(2010) scaled to a tree of length 400 (BM, $2 =0.03; OU,
$2 =0.3, !=0.06). For both the linear and exponential
versions of the time- and diversity-dependent models,
we simulated data sets with starting rates of $2 =0.6
and ending rates of $2 =0.01, declining with a slope
determined by the model and tree (e.g., for time-
dependent models, the slope is a function of the total
height of the tree; for the TDexp model, these parameters
result in a total of 5.9 half-lives elapsing from the root to
the tip of the tree, Slater and Pennell 2014). In another
set of simulations, we fixed the tree size at 100 tips
and varied parameter values to determine the effect
of parameter values on identifiability (see “Results”
section). As above, we calculated the AICc for all models
for each simulated data set.

Finally, to understand how removing stabilizing
selection from the likelihood of the matching
competition model affects our inference in the presence
of stabilizing selection, we simulated data sets with
both matching competition and stabilizing selection on
100 tip trees, across a range of parameter space (S=−1,
−0.5, and 0, !=0.05, 0.5, and 5, holding $2 at 0.05). We
fit BM, OU, and matching competition models to these
simulated data sets. All simulations were performed
using our own codes, available in RPANDA (Morlon
et al. 2016).

Fitting the Matching Competition Model of Trait Evolution
to Caribbean Anolis Lizards

To determine whether the matching competition
model is favored over models that ignore interspecific
interactions in an empirical system where competition
likely influenced character evolution, we fit the matching
competition model to a morphological data set of adult
males from 100 species of Greater Antillean Anolis lizards
and the time calibrated, maximum clade credibility
tree calculated from a Bayesian sample of molecular
phylogenies (Mahler et al. 2010, 2013; Mahler and
Ingram 2014). We included the first four size-corrected
phylogenetic principal components from a set of 11
morphological measurements, collectively accounting
for 93% of the cumulative variance explained (see
details in Mahler et al. 2013). Each of these axes is
readily interpretable as a suite of specific morphological
characters (see “Discussion” section), and together, the
shape axes quantified by these principal components
describe the morphological variation associated with
differences between classical ecomorphs in Caribbean
anoles (Williams 1972). In addition to the matching
competition model, we fit the six previously mentioned
models (BM, OU, TDexp, TDlin, DDexp, and DDlin)
separately to each phylogenetic PC axis in the Anolis
data set.

For the matching competition model and diversity-
dependent models, to determine the influence of

uncertainty in designating clades as sympatric and
allopatric, we fit the model for each trait using 101
sets of geography matrices (i.e., A in equations (1), (2),
and (3), see Fig. 1): one where all lineages were set as
sympatric, and the remaining 100 with biogeographical
reconstructions from the output of the make.simmap
function in phytools (Revell 2012). To simplify the ML
optimization, we restricted S to take negative values
while fitting the matching competition model including
the biogeographical relationships among taxa (i.e., we
forced the optimization algorithm to only propose S
values "0).

RESULT

Statistical Properties of the Matching Competition Model
Across a range of S values, ML optimization returns

reliable estimates of parameter values for the matching
competition model (Fig. 2). As the number of tips
increases, so does the reliability of ML parameter values
(Fig. 2). Parameter estimates remain reliable in the
presence of extinction, unless the extinction fraction
is very large (i.e., !0.6; Supplementary Appendix 2
available on Dryad). When data sets are simulated under
the matching competition model, model selection using
AICc generally picks the matching competition model as
the best model (Fig. 3, Supplementary Fig. S1 available
on Dryad); the strength of this discrimination depends
on both the S value used to simulate the data and the
size of the tree (Fig. 3, Supplementary Fig. S1 available
on Dryad). For example, when S=−0.1, the matching
competition model often has a higher AICc than BM,
largely due to the fact that the BM model has one less
parameter.

Simulating data sets under BM, OU, DDexp, and
DDlin generating models, we found that in most
scenarios, and in most parameter space, these models
are distinguishable from the matching competition
model (Fig. 4a,b,e,f, Supplementary Fig. S2 available
on Dryad). As with the matching competition model,
the ability to distinguish between models using AICc
generally increases with increasing tree sizes (Fig. 4)
and with increasing magnitude of parameter values
(Supplementary Fig. S2 available on Dryad). When
character data were simulated under a TDlin model
of evolution, the matching competition and/or the
diversity-dependent models tended to have lower AICc
values than the TDlin model, especially among smaller
trees (Fig. 4d). For data generated under a TDexp
model, model selection always favored the matching
competition model over the TDexp model (Fig. 4c).

Though the current implementation of the ML
tools for the matching competition do not incorporate
stabilizing selection, simulating data sets with both
matching competition and stabilizing selection reveals
that as the strength of stabilizing selection increases
relative to the strength of competition (i.e., ! as increases
relative to S), AICc model selection shifts from favoring
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the matching competition model (under large S, small
! scenarios) to favoring the OU model (under small S,
large ! scenarios) (Supplementary Fig. S3 available on
Dryad). Likewise, ML increasingly underestimates the
value of S as the value of ! increases (Supplementary
Fig. S4 available on Dryad).

Competition in Greater Antillean Anolis Lizards
For the first four phylogenetic principal components

describing variation in Anolis morphology, we found
that models that incorporate species interactions fit the

data better than models that ignore them (Table 1).
PC1, which describes variation in hindlimb/hindtoe
length (Mahler et al. 2013), is fit best by the matching
competition model. PC2, which describes variation
in body size (snout vent length) is fit best by the
linear diversity-dependent model. PC3, which describes
variation in forelimb/foretoe length, and PC4, which
describes variation in lamellae number are fit with mixed
support across the models included, but with models
incorporating species interactions providing the best
overall fits.

Additionally, for every PC axis, the best-fit
models were ones that incorporated the geographic
relationships among species in the tree, and these
conclusions were robust to uncertainty in ancestral
reconstructions of sympatry (Table 1).

DISCUSSION

The inference methods we present here represent an
important new addition to the comparative trait analysis
toolkit. Whereas previous models had not accounted for
the influence of trait values in other lineages on character
evolution, the matching competition model takes these
into account. Furthermore, extending both the matching
competition model and two diversity-dependent trait
evolution models to incorporate geographic networks
of sympatry further extends the utility and biological
realism of these models.

We found that the matching competition model has
increasing AICc support and accuracy of parameter
estimation with increasing tree sizes and competition
strength. We also found that, for most of the generating
models we tested, AICc-based model selection does not
tend to erroneously select the matching competition
model (i.e., these models are identifiable from the
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FIGURE 4. Identifiability simulation results for the matching competition (MC) model. When the generating model is either (a) BM, (b) OU,
(e) DDexp (for larger trees) or (f) DDlin, the generating model is largely favored by model selection. However, both (c) TDexp and (d) TDin (for
smaller trees) are erroneously rejected as the generating model. The dotted lines denote 10%.

matching competition model). As with all other models,
the statistical properties of the matching competition
model will depend on the size and shape of a particular
phylogeny as well as specific model parameter values.
Future investigators can employ other approaches, such
as phylogenetic Monte Carlo and posterior predictive
simulations directly on their empirical trees (Boettiger
et al. 2012; Slater and Pennell 2014), to assess the
confidence they can have in their results.

We did, however, find that data generated under
time-dependent models were often fit better by
models that incorporate interspecific interactions (i.e.,
density-dependent and matching competition models)

(Fig. 4c,d). This was especially true for the TDexp model,
often referred to as the early-burst model—the matching
competition model nearly always fit data generated
under the TDexp model better than the TDexp model
(Fig. 4c). We do not view this as a major limitation of the
model for two reasons. First, the TDexp model is known
to be statistically difficult to estimate on neontological
data alone (Harmon et al. 2010; Slater et al. 2012a; Slater
and Pennell 2014). Second, and more importantly, time-
dependent models are not process-based models, but
rather incorporate time since the root of a tree as a
proxy for ecological opportunity or available niche space
(Harmon et al. 2010; Mahler et al. 2010). The matching
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TABLE 1. Comparison of model fits for the first four phylogenetic PC axes of a morphological data set of Greater Antillean anoles

Trait Model k $2 b r S ln(L) %AICc Akaike weights

pPC1 BM 2 0.0033 — — — −13.68 21.36 (0.19) <0.01
OU 3 0.0033 — — — −13.68 — —
TDexp 3 0.0324 — −0.068 — −5.20 6.51 (0.19) 0.03
TDlinear 3 0.0113 −0.019 — — −4.88 5.89 (0.19) 0.04
DDexp 3 0.0184 — −0.028 — −4.37 4.87 (0.19) 0.06 (0.004)
DDexp + GEO 3 0.0087 (1.48E-5) — −0.043 (7.29E-5) — −8.00 12.05 (0.19) <0.01
DDlin 3 0.0089 −0.00008 — — −4.89 5.91 (0.19) 0.04
DDlin + GEO 3 0.0060 (6.25E-6) −0.00011 (1.24E-7) — — −8.23 12.49 (0.18) <0.01
MCsym 3 0.0010 — — −0.037 −3.67 2.96 (0.19) 0.16 (0.01)
MC + GEO 3 0.0010 (6.75E-6) — — −0.038 (0.00017) −1.94(0.10) 0 (0.031) 0.68 (0.02)

pPC2 BM 2 0.0027 — — — −4.69 9.64 (0.036) 0.01
OU 3 0.0027 — — — −4.69 — —
TDexp 3 0.0046 — −0.014 — −4.30 10.99 (0.036) <0.01
TDlinear 3 0.0047 −0.011 — — −4.23 10.85 (0.036) <0.01
DDexp 3 0.0041 — −0.006 — −4.27 10.94 (0.036) <0.01
DDexp + GEO 3 0.0068 (1.36E-5) — −0.039 (9.72E-5) 0.51 (0.024) 1.37 (0.015) 0.33 (0.002)
DDlin 3 0.0042 −0.00002 — — −4.21 10.82 (0.036) <0.01
DDlin + GEO 3 0.0054 (4.24E-6) −0.00010 (9.17E-8) — — 1.20 (0.017) 0 (0) 0.64 (0.001)
MCsym 3 0.0021 — — −9.9e-3 −3.95 9.79 (0.036) <0.01
MC+ GEO 3 0.0018 (2.44E-6) — — −0.015 (4.67E-5) −2.94 8.30 (0.047) 0.01

pPC3 BM 2 0.0010 — — — 45.57 2.56 (0.021) 0.09 (0.0003)
OU 3 0.0010 — — — 45.57 — —
TDexp 3 0.0020 — −0.019 — 46.30 3.22 (0.021) 0.06 (0.0002)
TDlinear 3 0.0019 −0.013 — — 46.41 3.02 (0.021) 0.07 (0.0003)
DDexp 3 0.0017 — −0.008 — 46.40 3.02 (0.021) 0.07 (0.0003)
DDexp + GEO 3 0.0015 (1.48E-6) — −0.017 (3.72E-5) — 46.79 (0.006) 2.24 (0.024) 0.10 (0.0006)
DDlin 3 0.0017 −0.000009 — — 46.46 2.90 (0.021) 0.08 (0.0003)
DDlin + GEO 3 0.0014 (8.76E-7) −0.000016 (2.96E-8) — — 46.68 (0.005) 2.44 (0.023) 0.09 (0.0005)
MCsym 3 0.0007 — — −0.012 46.75 2.33 (0.021) 0.10 (0.0004)
MC + GEO 3 0.0006 (6.15E-7) — — −0.017 (3.38E-5) 47.91 (0.011) 0 (0) 0.32 (0.002)

pPC4 BM 2 0.0006 — — — 69.07 2.50 (0.016) 0.06 (0.0002)
OU 3 0.0006 — — — 69.07 — —
TDexp 3 0.0015 — −0.025 — 70.55 1.66 (0.016) 0.09 (0.0003)
TDlinear 3 0.0012 −0.013 — — 70.45 1.86 (0.016) 0.08 (0.0003)
DDexp 3 0.0012 — −0.010 — 70.52 1.73 (0.016) 0.08 (0.0003)
DDexp + GEO 3 0.0010 (1.18E-6) — −0.020 (4.38E-5) — 71.28 (0.011) 0.13 (0.020) 0.18 (0.001)
DDlin 3 0.0011 −0.000006 — — 70.39 1.99 (0.016) 0.07 (0.0002)
DDlin + GEO 3 0.0009 (5.77E-7) −0.000009 (1.98E-8) — — 70.78 (0.008) 1.12 (0.016) 0.11 (0.0006)
MC 3 0.0004 — — −0.015 71.1 0.57 (0.016) 0.15 (0.0005)
MC + GEO 3 0.0004 (4.21E-7) — — −0.016 (3.56E-5) 71.34 (0.009) 0 (0.012) 0.19 (0.001)

Notes: Models run incorporating geography matrices are indicated by “+ GEO,” and models with the lowest AICc for each trait are shaded
and written in bold text. Parameter values presented follow the nomenclature of equations (2–4) in the main text, and k represents the number
of parameters estimated for each model. Note that TDexp is the ACDC model (or the early-burst model when r<0). OU model weights were
excluded because the ML estimates of ! equaled 0 for all PC axes, and thus the OU model was equivalent to BM. Median (standard error)
of parameter estimates, %AICc values, and Akaike weights are presented for fits across 100 sampled stochastic maps of Anolis biogeography
(standard errors are omitted for Akaike weights < 0.05).

competition and density-dependent models explicitly
account for the interspecific competitive interactions that
time-dependent models purport to model, thus we argue
that these process-based models are more biologically
meaningful than time-dependent models (Moen and
Morlon 2014).

We did not incorporate stabilizing selection in our
model. Preliminary analyses suggested that S and
! are not identifiable (though their sum may be),
as competition and stabilizing selection operate in
opposite directions. As a result, when trait data are
simulated with simultaneous stabilizing selection and
matching competition, the strength of competition is
underestimated. In addition, which model is chosen
by model selection depends on the ratio of the
strength of attraction toward an optimum to the
strength of competition, with Brownian model being

selected at equal strengths (Supplementary Figs. S3, S4
available on Dryad). Given that many traits involved
in competitive interactions are also likely to have
been subject to stabilizing selection (i.e., extreme
trait values eventually become targeted by negative
selection), statistical inference under the matching
competition model without stabilizing selection is likely
to underestimate the true effect of competition on trait
evolution. Future work aimed at directly incorporating
stabilizing selection in the inference tool could provide a
more accurate quantification of the effect of competition,
although dealing with the nonidentifiability issue may
require incorporating additional data such as fossils.

Because the matching competition model depends
on the mean trait values in an evolving clade, ML
estimation is robust to extinction, whereas the diversity-
dependent models are less so (Supplementary Appendix
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S2, Supplementary Figs. S5–S8 available on Dryad).
Nevertheless, given the failure of ML to recover accurate
parameter estimates of the matching competition model
at high levels of extinction (# :&!0.6), we suggest that
these models should not be used in clades where the
extinction rate is known to be particularly high. In such
cases, it would be preferable to modify the inference
framework presented here to include data from fossil
lineages (Slater et al. 2012a) by adapting the ordinary
differential equations described in equations (3a) and
(3b) for nonultrametric trees.

For all of the traits we analyzed in the Greater Antillean
Anolis lizards, we found that models incorporating
both the influence of other lineages and the specific
geographical relationships among lineages were the
most strongly supported models (though less strikingly
for PC3 and PC4). Incorporating uncertainty in
biogeographical reconstruction, which we encourage
future investigators to do in general, demonstrated
that these conclusions were robust to variation in
the designation of allopatry and sympatry throughout
the clade. We note that while stochastic mapping is
reasonable for a group like Greater Antillean Anolis
lizards, where species are found on single islands,
more sophisticated biogeographical models should be
used in most other cases (e.g., Ronquist and Sanmartín
2011; Landis et al. 2013; Matzke 2014). The matching
competition model is favored in the phylogenetic
principal component axis describing variation in relative
hindlimb size. Previous research demonstrates that limb
morphology explains between ecomorph variation in
locomotive capabilities and perch characteristics (Losos
1990, 2009; Irschick et al. 1997), and our results suggest
that the evolutionary dynamics of these traits have
been influenced by the evolution of limb morphology
in other sympatric lineages. These results support the
assumption that interspecific interactions resulting from
similarity in trait values are important components
of adaptive radiations (Losos 1994; Schluter 2000),
a prediction that has been historically difficult to
test (Losos 2009, but see Mahler et al. 2010). In
combination with previous research demonstrating a set
of convergent adaptive peaks in morphospace to which
lineages are attracted (Mahler et al. 2013), our results
suggest that competition likely played an important
role in driving lineages toward these distinct peaks.
Because we expect the presence of selection toward
optima to lead to underestimation of the S parameter
in the matching competition model (Supplementary
Figs. S3, S4 available on Dryad), we would have likely
detected an even stronger effect of competition in the
Anolis data set if we had included stabilizing selection.
Recently, Uyeda and colleagues (2015) demonstrated that
the use of principal components can bias inferences of
trait evolution. We used BM-based phylogenetic PC axes
here, which should reduce this potential bias (Revell
2009). We recognize that there is some circularity in
assuming BM in order to compute phylogenetic PC
axes before fitting other trait models to these axes;
a general solution to address this circularity problem

remains to be found (Uyeda et al. 2015). Uyeda and
colleagues suggested that using phylogenetic PC axes
sorts the traits according to specific models. In the
Greater Antillean Anolis lizards, the first axes are easily
interpretable as specific suites of traits relevant to
competitive interactions, and our results suggest that
competition played an important role in shaping the
evolution of these traits.

The linear version of Nuismer and Harmon (2015)
model (equation (1)) results from making the simplifying
assumption that the outcome of competition is not
highly sensitive to variation in sympatric competitors’
phenotypes (i.e., that ! in their equation 1, and as a
result also S in our equations, are small). We used
this version here, since currently available likelihood
tools for trait evolution rely on the multivariate normal
distribution, which is to be expected only for this linear
form of the model. The current formulation (equation
1) corresponds to a scenario in which the rate of
phenotypic evolution in a lineage gets higher as the
lineage deviates from the mean phenotype, although
character displacement theory, for example, posits that
selection for divergence should be the strongest when
species are most ecologically similar (Brown and Wilson
1956). Given this formulation of the model, large S
values are not to be expected, and we indeed found
relatively small S values when fitting the model to
the Anolis data set. Investigators finding high S values
should treat them with caution and consider enforcing
bounds on the likelihood search. Nevertheless, the
developments presented here provide an important new
set of tools for investigating the impact of interspecific
interactions on trait evolution, and researchers can
perform posterior simulations to assess the realism
of the resulting inference. Future development of
likelihood-free methods, such as Approximate Bayesian
Computation (Slater et al. 2012b; Kutsukake and Innan
2013), may be possible for fitting the version of the
model in which the outcome of competitive interactions
depends on distance in trait space.

We imagine that the matching competition model
and biogeographical implementations of diversity-
dependent models will play a substantial role in the
study of interspecific competition. For example, by
comparing the fits of the matching competition model
with other models that do not include competitive
interactions between lineages, biologists can directly
test hypotheses that make predictions about the role
of interspecific interactions in driving trait evolution.
In other words, while the effect of competition has
been historically difficult to detect (Losos 2009), it
may be detectable in the contemporary distribution
of trait values and their covariance structure (Hansen
and Martins 1996; Nuismer and Harmon 2015). The
ability to consider trait distributions among species that
arise from a model explicitly accounting for the effect
of species interactions on trait divergence is also an
important step toward a more coherent integration of
macroevolutionary models of phenotypic evolution in
community ecology.
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There are many possible extensions of the tools
developed in this article. In the future, empirical
applications of the model can be implemented with
more complex geography matrices that are more realistic
for mainland taxa (e.g., using ancestral biogeographical
reconstruction, Ronquist and Sanmartín 2011; Landis
et al. 2013), and can also specify degrees of sympatric
overlap (i.e., syntopy). Additionally, the current version
of the model is rather computationally expensive with
larger trees (on a Mac laptop with a 2.6 GHz processor,
ML optimization for the matching competition model
takes several minutes for a tree with 50 tips and can
take 30 minutes or longer on 100 tip trees). Further
work developing an analytical solution to the model may
greatly speed up the likelihood calculation and permit
the inclusion of stabilizing selection.

The current form of the model assumes that the degree
of competition is equal for all interacting lineages. Future
modifications of the model, such as applications of
stepwise AICc algorithms (Alfaro et al. 2009; Thomas
and Freckleton 2012; Mahler et al. 2013) or reversible-
jump Markov chain Monte Carlo (Pagel and Meade
2006; Eastman et al. 2011; Rabosky 2014; Uyeda and
Harmon 2014), may be useful to either identify more
intensely competing lineages or test hypotheses about
the strength of competition between specific taxa.
Improvements could also be made on the formulation
itself of the evolution of a species’ trait as a response to
the phenotypic landscape in which the species occurs.
Moreover, a great array of extensions will come from
modeling species interactions not only within clades,
but also among interacting clades, as in the case
of coevolution in bipartite mutualistic or antagonistic
networks, such as plant–pollinator or plant–herbivore
systems.
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1 Supplementary Appendix 1

Considering that n lineages are interacting at time t, each trait i evolves following the equation :

dzi(t) = zi(t+ dt)� zi(t) = S

  
1

ni

nX

l=1

Ai,lzl(t)

!
� zi(t)

!
dt+ �dBi(t)

Where Ai,l is equal to 1 if lineages i and l are sympatric, and to 0 otherwise, ni =
Pn

l=1Ai,l is the total
number of lineages in sympatry with lineage i, and Bi(t) represents standard Brownian motion.

Here, we present the derivation of Equations 3a and 3b from the main text. To make the derivation
easier to follow, we drop the dependence on time t, replacing zi(t) with zi and Bi(t) with Bi.

First, applying the Itô formula to these stochastic processes gives us :

d (zizj) = zidzj + zjdzi + d < zi, zj >

= S

  
1

nj

nX

l=1

Aj,lzlzi

!
� zjzi

!
dt+ �zidBj

+ S

  
1

ni

nX

k=1

Ai,kzkzj

!
� zjzi

!
dt+ �zjdBi

+ �21i=jdt

where 1i=j equals one if i = j and zero otherwise.
Taking this expectation, it follows that :

d

dt
E (zizj) = S

  
1

nj

nX

l=1

Aj,lE(zlzi)
!

� E(zjzi)
!
dt

+ S

  
1

ni

nX

k=1

Ai,kE(zkzj)
!

� E(zjzi)
!
dt

+ �21i=jdt

Moreover, we get :

d

dt
E(zi) = S

  
1

ni

nX

l=1

Ai,lE(zl)
!

� E(zi)
!
dt

which leads to :
d

dt
(E(zi)E(zj)) = E(zj)

d

dt
E(zi) + E(zi)

d

dt
E(zj)

= S

  
1

ni

nX

k=1

Ai,kE(zk)E(zj)
!

� E(zi)E(zj)
!
dt

+ S

  
1

nj

nX

l=1

Aj,lE(zl)E(zi)
!

� E(zj)E(zi)
!
dt

Taking together these different parts gives us the ODE satisfied by all covariances (denoted vi,j =
Cov(zi, zj)) :

d

dt
vi,j =

d

dt
(E (zizj)� E(zi)E(zj))

= �2Svi,j +
S

ni

nX

k=1

Ai,kvk,j +
S

nj

nX

l=1

Aj,lvl,i + �21i=j (1)

1



Using these derivations, the variance terms (i = j) are calculated using:

d

dt
vi,i = �2S(ni � 1)

ni
vi,i +

2S

ni

nX

l=1
l 6=i

Ai,lvl,i + �2 (2)

The covariance terms (i 6= j) are calculated using:

d

dt
vi,j = �S

✓
ni � 1

ni
+

nj � 1

nj

◆
vi,j +

S

ni

nX

k=1
k 6=i

Ai,kvk,j +
S

nj

nX

l=1
l 6=j

Aj,lvl,i (3)

In the case where lineages i and j are in sympatry, this formula simplifies to:

d

dt
vi,j = �2S(ni � 1)

ni
vi,j +

S

ni

0

BB@
nX

k=1
k 6=i

Ai,kvk,j +
nX

l=1
l 6=j

Aj,lvl,i

1

CCA (4)

To solve the ODEs for the variance and covariance terms from the root to the tip, we begin by fixing
the variance v0 for the process at the root to 0. At each speciation event, the starting value for both
the variance of each of the new lineages and the covariance between the two new lineages is the variance
of the immediate ancestor at the time of the speciation event, and the starting value for the covariance
between the new lineages and any other persisting lineage is set to the value of the covariance between
the persisting lineage and the ancestor of the new lineages at the time of speciation.
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Supplementary Appendix 2: Estimating the effect of extinction on parameter estimation for 
the matching competition and density-dependent models. 
 
 Given that the matching competition and diversity-dependent models take into account 
the number of interacting lineages, extinction may affect our ability to recover true parameter 
values. To estimate the impact of extinction, we simulated 100 trees with 100 extant species, 
varying the extinction fraction (!: ! = 0.2, 0.4, 0.6, and 0.8). As above, we recursively simulated 
traits using the matching competition model with !! = 0.05 and S = -1.5, -1, -0.5, -0.1, or 0, and 
the linear and exponential diversity-dependent models with starting rates of !! = 0.6 and ending 
rates of !! = 0.01. We then estimated the maximum likelihood parameter estimates for the 
generating models by fitting the models to the trait values for extant species and the tree with 
extinct lineages removed. In the case of the matching competition model, because many 
simulated birth-death trees with high extinction rates have substantially older root ages, the 
simulated trait datasets for some trees had very large variances. For these biologically unrealistic 
trait datasets (i.e., variance in trait values ≥ 1x108 ), ML does not yield reliable parameter 
estimates, so we removed them from further analyses (the sample size of included simulations is 
reported in Fig. S5, S6). 
 Parameter estimates are quite robust to extinction under the matching competition model 
(Fig. S5, S6), and much more so than under both diversity-dependent models (Fig. S7, S8). 
Under the matching competition model, the maximum likelihood optimization returns reliable 
estimates of S and !! values used to simulate datasets on trees with extinct lineages (Fig. S5, 
S6), although the estimates become much less reliable with larger extinction fractions, likely 
because simulations under the matching competition model were unbounded, resulting in trait 
datasets with biologically unrealistic variances. Under both diversity-dependent models, the 
magnitude of both the slope and !! parameter values are increasingly underestimated with 
increasing extinction fractions (Fig. S7, S8). 
 
 
  



Supplementary Figure 1. As tree size and/or the degree of competition (S) increases, model 
selection becomes more reliable. Comparison of Akaike weights (median & 90% CIs) for NH, 
BM, OU, and EB models when simulated under various levels of competition (S = -1.5, -1, -0.5, 
-0.1, and 0) for trees with 20, 50, 100, and 150 tips. 
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Supplementary Figure 2. Identifiability simulation results for the matching competition model as 
a function of varying parameter values of the generating models. Parameter values are (A) !! for 
BM, (B) ! for OU (!! was fixed at 0.3), and the !! value at the root for (C) TDexp, (D) TDlin, (E) 
DDexp, and (F) DDlin (for C-F, !! at the present was fixed at 0.01).  
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Supplementary Figure 3. The effect of incorporating stabilizing selection into trait evolution on 
model selection. For datasets generated under the matching competition model with stabilizing 
selection included, as the ratio of the strength competition (S) to the strength of selection toward 
an optimum (!) varies, so does the model preferred by model selection. 
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Supplementary Figure 4. The effect of incorporating stabilizing selection into trait evolution on 
parameter estimation. As the strength of stabilizing selection increases (i.e., as ! increases), 
maximum likelihood under the matching competition model underestimates the true S value used 
to simulate datasets. Positive S values represent selection toward, rather than away, from the 
clade mean and are thus expected when the ratio of ! to S is large. The horizontal red line 
represents the simulated S value, and the dashed horizontal line represents S = 0. 
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Supplementary Figure 5. Simulation results showing the effect of varying the extinction fraction 
on estimation of the S parameter for the matching competition model. Red horizontal lines 
indicate the simulated S values, and numbers above sets of simulations indicate the sample size 
of included simulations under those scenarios (see main text for more details). 
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Supplementary Figure 6. Simulation results showing the effect of varying the extinction fraction 
on estimation of the !! parameter for the matching competition model. Red horizontal lines 
indicate the simulated !! value (0.05), the numbers below sets of simulations indicate the sample 
size of included simulations under those scenarios (see main text for more details), and the 
number in parentheses indicate sample size after !! values > 0.25 were removed. 
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Supplementary Figure 7. Simulation results showing the effect of varying the extinction fraction 
on slope (top) and !!  (bottom) parameters for the exponential diversity-dependent model. 
Increasing extinction levels result in increasingly underestimated slope values and !! parameters. 
Red horizontal lines indicate the simulated parameter values. 
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Supplementary Figure 8. Simulation results showing the effect of varying the extinction fraction 
on slope (top) and sigma-squared (bottom) parameters for the linear diversity-dependent model. 
Increasing extinction levels result in increasingly underestimated slope values and !! parameters. 
Red horizontal lines indicate the simulated parameter values. 
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