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Abstract A popular line of research in evolutionary biology is the use of time-
calibrated phylogenies for the inference of diversification processes. This requires
computing the likelihood of a given ultrametric tree as the reconstructed tree produced
by a given model of diversification. Etienne and Rosindell in Syst Biol 61(2):204–213,
(2012) proposed a lineage-based model of diversification, called protracted speciation,
where species remain incipient during a random duration before turning good species,
and showed that this can explain the slowdown in lineage accumulation observed
in real phylogenies. However, they were unable to provide a general likelihood for-
mula. Here, we present a likelihood formula for protracted speciation models, where
rates at which species turn good or become extinct can depend both on their age and
on time. Our only restrictive assumption is that speciation rate does not depend on
species status. Our likelihood formula utilizes a new technique, based on the contour
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of the phylogenetic tree and first developed by Lambert in Ann Probab 38(1):348–
395, (2010). We consider the reconstructed trees spanned by all extant species, by
all good extant species, or by all representative species, which are either good extant
species or incipient species representative of some good extinct species. Specifically,
we prove that each of these trees is a coalescent point process, that is, a planar, ultra-
metric tree where the coalescence times between two consecutive tips are independent,
identically distributed random variables. We characterize the common distribution of
these coalescence times in some, biologically meaningful, special cases for which the
likelihood reduces to an elegant analytical formula or becomes numerically tractable.

Keywords Phylogeny · Reconstructed tree · Protracted speciation · Multitype
branching process · Coalescent point process · Splitting tree · Birth–death process ·
Lévy process · Scale function

Mathematics Subject Classification (2000) Primary 60J80; Secondary 92D15 ·
60J85 · 92D25 · 92D40 · 60G51 · 60G55

1 Introduction

A central question in evolutionary biology is to infer the nature of processes which
have shaped the contemporaneous patterns of biodiversity. A popular approach is to
use time-calibrated phylogenies of extant species (starting with Nee et al. 1994 and
reviewed in Mooers and Heard 1997; Mooers et al. 2007; Ricklefs 2007; Pennell and
Harmon 2013; Pyron and Burbrink 2013; Stadler 2013; Morlon 2014) which have
been independently built, e.g., from interspecific gene sequence information. The aim
is to choose, among a class of models of speciation and extinction, the ones that are the
most likely to have generated a given phylogeny, by maximum likelihood or Bayesian
methods. One of the key steps in this process is to evaluate the likelihood of a phylogeny
under a given model of diversification, for example where species are viewed as
particles that can reproduce (speciation) or die (extinction) independently at random
times. For such so-called lineage-based models of diversification, it is elementary to
compute the likelihood of the whole species tree, but it is a more complicated task to
compute the likelihood of the species tree spanned by extant species, also called the
reconstructed tree. Reconstructed trees are ultrametric trees, in the sense that all tips
are at the same distance to the root. The probability distribution of the reconstructed
tree is well-known for the linear birth–death process of diversification, where lineages
are assumed to reproduce and die independently, at exponential rates possibly varying
in time (see Nee et al. 1994, following the seminal work of Kendall 1948). This
distribution is also known in the case of binomial sampling when only a fraction of
extant lineages is sampled, independently with a certain fixed probability (Morlon et
al. 2011; Stadler 2011; Hallinan 2012). A specific feature of the reconstructed tree
generated by a linear birth–death process with binomial sampling is that its topology
is uniform over topologies with ranked node splitting times, and that node splitting
times, or node depths, are independent and identically distributed (iid). Ultrametric
trees satisfying this property are called coalescent point processes (Popovic 2004;
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The reconstructed tree in the protracted speciation model 369

Aldous and Popovic 2005). Lambert (2010) and Lambert and Stadler (2013) proved
that this result is robust to the Markov assumption, that is, it holds even if species
lifetimes are not exponentially distributed, or otherwise put, when extinction rates
may depend on the species age.

Etienne and Rosindell (2012) have proposed a lineage-based model of diversifica-
tion, called protracted speciation model, where newborn species are so-called incipient
species and become so-called good species after some exponentially distributed time.
This model is a lineage-based version of the individual-based protracted speciation
model of Rosindell et al. (2010), and can explain the slowdown in lineage accumu-
lation observed in real phylogenies, a phenomenon that could indeed be due to the
fact that populations experiencing recent speciation are not detected as actual species.
Alternative explanations (reviewed in Moen and Morlon 2014) include the depen-
dence of speciation or extinction rates upon the overall number of species (Rabosky
and Lovette 2008; Etienne et al. 2012; Etienne and Haegeman 2012), ecological spe-
ciation (McPeek 2008), and geographic speciation (Pigot et al. 2010).

Here, we consider a generalization of this model, where the times spent in the
incipient stage (or in several incipient stages) and in the good stage can be correlated
and have inhomogeneous and general distributions, that is, when the rates at which
species can change type or become extinct may depend on time or on their age (and
type). The interpretation of protracted speciation is that newly founded populations
(i.e., incipient species) cannot be discriminated from their mother population before
enough time has elapsed to complete genetic differentiation and/or reproductive iso-
lation. In this view, all extant incipient species descending, by a chain of incipient
species, directly from the same good species, are considered as a cloud of satellite
populations belonging to the same species. This cloud must only have one represen-
tative species in the phylogenetic tree. If the ancestor good species a of the cloud is
extant, then a is the natural representative species of the cloud. Otherwise, we set up
a natural rule to define which of the extant descending incipient species of a is the
representative species. Roughly speaking, the one representative species of an extinct
good species a is chosen as the last incipient species among species descending from
a by a chain of incipient species.

We study the reconstructed tree spanned by all extant species, by representative
species and by good extant species (by decreasing order of inclusion). We prove that
if the speciation rate does not depend on species status, then all three reconstructed
trees are given by a coalescent point process, and we provide numerical methods to
compute the common distribution of node depths in each case. We also provide a
closed formula in the case of the reconstructed tree spanned by all extant species, as
well as by good extant species, in the original setting of Etienne and Rosindell (2012)
when rates are age-independent and do not vary with time.

Hereafter, we will make a difference between the terms phylogenetic tree and recon-
structed tree. The phylogenetic tree at time T is the tree with edge lengths obtained
after throwing away all points at distance larger than T from the root (the future of T ).
The reconstructed tree is the tree obtained from the phylogenetic tree after removing
all lineages that are extinct by time T .

In the next section, we specify the model assumptions, extending the constant rate
model of Etienne and Rosindell (2012) in two directions: the homogeneous model,
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where rates can be stage-dependent, and the Markov model, where rates can be time-
dependent. We also define the so-called ultimogeniture order on the (finite) set of
species of the phylogenetic tree, and use this order to define the rule for the choice
of representative species. In Sect. 3, we propose a first numerical method to compute
the likelihood of the reconstructed trees, which is a natural follow-up to the work of
Etienne and Rosindell (2012), involving an infinite set of coupled ordinary differential
equations. In Sect. 4, we give the rigorous definition of a coalescent point process,
we introduce a total order on the phylogenetic tree embedded in continuous time, and
use this to prove that the reconstructed tree of all extant species is a coalescent point
process. In Sect. 5, we propose two methods, one for the homogeneous model, and one
for the Markov model, to compute the coalescent distribution for the reconstructed
tree of all extant species. Each of these two methods can be applied to the constant rate
model, resulting in the same closed formula. In Sect. 6, we adapt these two methods
to the cases of good species and of representative species, both of which are much
more efficient and accurate than the one given in Sect. 3. In particular, we check the
accuracy of our method by comparing the distribution of node depths computed using
the coalescent point process with the empirical distribution of node depths provided
by direct stochastic simulations. In Sect. 7, we discuss two extensions to our model:
including several stages of incipientness, and assuming that only a fraction of extant
species is sampled.

2 Model and preliminaries

2.1 The protracted speciation model

Following Etienne and Rosindell (2012), we model the dynamics of a phylogeny by
a time-continuous, (possibly) time-inhomogeneous, (possibly) non-Markovian, two-
type process, where a birth event is interpreted as the arrival of an incipient species and a
death event is interpreted as an extinction. We will always assume that species behave
independently, that is, that there is no diversity-dependence (branching property).
We assume that each species gives birth in a Poissonian manner, that is, with an
instantaneous speciation rate b which is a constant or nonconstant function of time.

Species can be of type 1 or 2, where 1 is the ‘incipient’ stage and 2 is the ‘good’
stage. Note that the case of several stages will be studied in the last section. The
speciation rate is assumed to remain constant regardless of stages. At speciation time,
say s, the new species starts out in state 1. It remains in state 1 for a random duration
Us , which is the duration of the incipient stage. At time t = s + Us , it can become
extinct or change type, that is, turn into a good species, with a probability that may
depend on s and Us . If it succeeds to turn into a good species, it then survives another
random duration Vs , which is the duration of the good stage, after which it becomes
extinct. In what follows, the random variables Us and Vs may be correlated. We will
first study the case when their distribution does not depend on s, a case referred to as
the homogeneous model, because then the dynamics of the diversification process is
time-homogeneous. We will then focus on the case when the distribution of stages is
given by instantaneous hazard rates, in which case the diversification process counting
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the numbers of species of all types is Markovian. This case, referred to as the Markov
model, divides into the inhomogeneous Markov case, where rates can be time-variable,
and the homogeneous Markov case, which is the model studied most by Etienne and
Rosindell (2012). We will term this latter case the constant rate model. Note that the
constant rate model is the intersection between the homogeneous model (where rates
are time-independent but may be age-dependent) and the Markov model (where rates
are age-independent but may be time-dependent).

In the Markov model, an incipient species can become extinct at rateμ1 and can turn
into a good species at rate λ1; a good species becomes extinct at rateμ2. Note that these
rates may be nonconstant functions of time (inhomogeneous Markov case). Regardless
of species type, the speciation rate is b [an assumption written λ1 = λ3 by Etienne
and Rosindell (2012), where numbers indexing species status were swapped]. We will
always make this assumption, but we stress that we do not make further assumptions
on the other parameters (for example we can very well have μ1 �= μ2). We stress
that the constant rate model studied by Etienne and Rosindell (2012) indeed fits into
our general framework assuming that U is exponentially distributed with parameter
ν1:=λ1 + μ1, that V is independent of U , that V equals 0 with probability μ1/(λ1 +
μ1), and otherwise follows the exponential distribution with parameter μ2. Note that
then E(U ) = ν−1

1 and E(V ) = (λ1/ν1)μ
−1
2 , so that the diversification process is

supercritical (exponentially growing number of species with positive probability) iff
bE(U + V ) > 1, that is, b(μ2 + λ2)− ν1μ2 > 0.

In the general case, the event {V = 0} is the event that the species becomes extinct
before turning good. If U is set to 0, the process counting the number of species is a one-
type Crump–Mode–Jagers process, as studied by Lambert (2009, 2010) and Lambert
and Stadler (2013). In particular, if U is set to 0 and V is exponentially distributed, then
the process is a classical linear birth–death process, as studied by Nee et al. (1994),
which is (homogeneous and) Markovian. It is known that in the aforementioned simple
cases, the likelihood of the reconstructed tree can be put in product form, meaning
that the coalescence times, or node depths, are independent. Actually, they are also
equally distributed, so the reconstructed tree is a so-called coalescent point process
(see below). We will show that the reconstructed tree (spanned by all extant species, or
by all good extant species, or by all representative species) is again a coalescent point
process, even if U and V are both truly random and possibly correlated, and even if
their joint distribution is time-dependent.

2.2 The ultimogeniture order and the definition of representative species

From now on, we consider a protracted diversification process starting with one (incip-
ient) progenitor species at time 0 and conditioned to have extant species at time T . We
wish to endow its set of species, both extant and extinct, with a total order, regardless
of types.

Recall that in our setting, at each speciation event, we discriminate between the
mother species and the daughter species (a distinction that can be randomly defined
in the Markov model, with equal probabilities for each of the two configurations). We
can now define an order on the set of species, called ultimogeniture order. In what
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(a) (b) (c) (d)

Fig. 1 a A phylogenetic tree with two stages, starting from one ancestor species born incipient at time 0,
with 8 extant species at time T labeled in the ultimogeniture order. Dotted lines indicate speciation events.
Vertical edges start in dashed line, indicating the incipient stage, which sometimes turn into a solid line,
indicating the good stage. The four species 2, 3, 6 and 7 are still incipient at time T , and species 2 (resp.
species 7) is not representative, because the first extant descendant of its most recent good ancestor species
is species 1 (resp. species 6); b The reconstructed tree of all species extant at T ; c The reconstructed tree
of representative species extant at T ; d The reconstructed tree of good species extant at T

follows, we will say that species a is younger than species b if a was born later than
b, in forward time.

Definition 2.1 We define the ultimogeniture order, denoted by the order relation ≺,
as follows. Let a and b be two species with most recent common ancestor species c.
If a = c, we set a ≺ b, and if b = c, we set b ≺ a. Otherwise, we let a′ and b′ be
the daughters of c which are ancestors of a and b respectively. Then a ≺ b if a′ is
younger than b′, and b ≺ a if b′ is younger than a′. We will most of the times say that
a is smaller than b instead of writing a ≺ b.

Another way of defining this order is to recursively label each species by a finite
word of integers as follows. The progenitor species is labeled ∅. Then, if u is the label
of a species born before T , then the youngest daughter of u born before T is labeled
u1, its second youngest daughter born before T is labeled u2, and so on. Then the
ultimogeniture order is the lexicographical order associated with this labeling.

It is not difficult to see that this order defines a total order on any finite set of species,
and in particular on the set of species, extant or extinct, of the tree stopped at time
T . See Fig. 1 for an example of a phylogenetic tree with 7 species extant at time T
labeled in the ultimogeniture order.

For any species a with extant descendance, one can define the smallest extant
descendant of a, or first extant descendant of a as the smallest species in the set of
its extant descendant species, where ‘small’ and ‘first’ are to be understood in the
sense of the ultimogeniture order. In other words, the first extant descendant of a is
the unique extant species b descending from a such that b ≺ c for any other extant
species c descending from a. Note that the first extant descendant of a can also be
defined recursively as the first extant descendant of its youngest daughter with extant
descendance.

We now wish to define representative species. As in the infinite alleles model,
assume that each new good species is given a new type, called allele to avoid ambi-
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Fig. 2 A phylogenetic tree with 4 extant species at time T . Species 1 is good at time T but all other species
are still incipient at T . This figure illustrates the fact that a species with extant descendance carrying the
same allele can have no representative species. Species a has no representative species at T because its
first extant descendant (species 1) is a good species, and so does not carry the same allele (but a red allele).
However, species 2 and 3 are extant species both carrying the same allele as species 1 (blue allele). Species
b is represented by species 4 (black allele)

guity with the stages, and assume this allele is inherited by all its daughter incipient
species. As said in the introduction, all species with the same allele are seen as satellite
populations of the same species that cannot be discriminated from each other, so that a
phylogenetic tree cannot comprise more than one representative of all species sharing
the same allele. We want to set up a rule to designate the representative species of each
allele at time T . Then we will be able to consider the reconstructed tree of represen-
tative species, as the tree subtended by all species extant at T that are representative
of some good ancestor species. First, if the good ancestor species is extant at T , then
it is naturally chosen as the representative species of its allele. If the good ancestor
species is extinct by T , we should ideally designate the representative species as the
smallest of the extant descendance of the good (extinct) ancestor species that share the
same allele. With such a definition, any extinct good species with extant descending
species sharing the same allele would be represented. However, it will be mathemat-
ically more convenient to set up the following alternative rule, which is biologically
less satisfying, because an extinct good species might have extant descending species
sharing the same allele but no representative species (see Fig. 2 for an example).

Definition 2.2 Any good species extant at time T is its own representative species.
For any good species extinct at time T , if its first extant descendant shares the same
allele, then it is designated as its representative species, otherwise no representative
species is designated.

A consequence of this definition is that any extant incipient species which is the first
extant descendant of some extinct good species is a representative species. See Fig. 1c
for the reconstructed tree of representative species extant at T .

123



374 A. Lambert et al.

In what follows, we will use, as is usual, the term ‘crown age’ of a phylogenetic
tree as the age of its oldest node, or time elapsed since the most recent ancestor point
common to the whole tree. The larger ‘stem age’ is a fixed amount of time, set in
models to be the age of the starting point of the diversification process (T in what
precedes).

3 An infinite set of coupled ODEs

Let P(n1, n2; t) denote the probability that one incipient species born at time 0 has
n1 descendant incipient species and n2 descendant good species at time t . Also
let P(·, n2; t) = ∑

n1≥0 P(n1, n2; t) denote the probability of n2 descendant good
species and P(n1, ·; t) = ∑

n2≥0 P(n1, n2; t) denote the probability of n1 descendant
incipient species.

Etienne and Rosindell (2012) provided an expression of the likelihood of a phy-
logeny with stem or crown age T for the Markov version (with constant rates) of
the protracted speciation model. This expression is a product of a multiplicative term
involving P(·, 0; T ) and of evaluations of the function f at node depths of the phy-
logeny (see next section), where f (t) = P(·, 1; T − t).

The functions P(·, 0; t) and P(1, ·; t) can in principle be obtained by integrating
the (infinite) system set of Kolmogorov differential equations satisfied by the func-
tions (P(n1, n2; t))n1,n2 . When there is no extinction (μ1 = μ2 = 0), P(n, 0; t) and
P(n, 1; t) can be computed analytically by solving the corresponding partial differ-
ential equation for the probability generating function (Etienne and Rosindell 2012).

When extinction is non-zero, however, this trick no longer works because the partial
differential equations are not analytically tractable. A different trick, used by Kendall
(1948) and Nee et al. (1994) is however possible, under the assumption μ1 = μ2 =:
μ. One can then view the reconstructed birth–death process as a birth process with
time-dependent speciation initiation rate baT (t) at time T − t where aT (t) = (b −
μ)/

(
b − μe−(b−μ)(T −t)

)
is the probability of survival of the birth–death process with

birth rate b and death rate μ, in T − t time units. Thus, we get

d

dt
P(n, 0; t) = baT (n − 1)P(n − 1, 0; t)− ((baT + λ1)n)P(n, 0; t) (1a)

d

dt
P(n, 1; t) = baT n P(n − 1, 1; t)+ λ1(n + 1)P(n + 1, 0; t) (1b)

−(baT (n + 1)+ λ1n)P(n, 1; t)

with initial conditions P(n, 0; 0) = 1 if n = 1 and 0 otherwise, and P(n, 1; 0) = 0 for
all n. This procedure has three disadvantages. First, in practice only an approximation
can be used by truncating the infinite set of ODEs at some arbitrary values of n1 and
n2. Second, the set of ODEs is large even for moderate upper limits of n1 and n2,
and hence computationally demanding. Third, the procedure is only valid under the
assumption that μ1 = μ2. In this paper, we develop an approach which avoids these
three disadvantages.
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Fig. 3 Illustration of a coalescent point process showing the node depths H1, . . . , H6 for each of the 6
consecutive pairs of tips. The node depth H7 is the first one which is larger than T

4 Coalescent point processes and the reconstructed tree of all extant species

4.1 Coalescent point processes

4.1.1 Definitions and main properties

Definition 4.1 A coalescent point process is a random, planar, ultrametric tree with
edge lengths, where tips are numbered 0, 1, 2, . . . from left to right, started with a
single root point, and which satisfies the following two properties, monotonic labeling
and independence, to be defined below.

We call T the stem age of this tree, that is, the common graph distance of tips to
the unique root point.

1. Monotonic labeling If Ci,i+k denotes the coalescence time, (or divergence time)
between tip i and tip i + k, that is, the time elapsed since their lineages have diverged,
then

Ci,i+k = max{Hi+1, . . . , Hi+k}, (2)

where Hi :=Ci−1,i . In particular, the genealogical structure is entirely given by the
knowledge of the sequence H1, H2, . . . that we will call either coalescence times or
node depths. See Fig. 3 for a tree satisfying this property.

2. Independence There is a random variable H (whose probability distribution may
depend on T ) such that node depths form a sequence of independent, identically
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distributed random variables, all distributed as H , killed at its first value larger
than T .

Otherwise said, the number NT of tips in the coalescent point process follows
the geometric distribution with success parameter P(H > T ), and, conditional on
NT = n, the node depths H1, . . . , Hn are independent copies of H conditioned on
H ≤ T . We will call the coalescent distribution associated with a coalescent point
process the law of H . It will often be convenient to use the inverse W of the tail of the
coalescent distribution as a way of characterizing it

W (y):= 1

P(H > y)
y ≥ 0.

We will always assume that H has a density (wrt Lebesgue measure), so that W is
differentiable and the density of H , say f , is given by

f (y) = − d

dy
P(H > y) = W ′(y)

W (y)2
.

4.1.2 Likelihood formulae

If a reconstructed tree has the law of a coalescent point process with coalescent density
f (given by f = W ′/W 2,W denoting the inverse of the tail of the coalescent distribu-
tion), then the likelihood L (conditional on at least 1 extant species) of a reconstructed
tree τ with stem age T, n extant species and node depths x1 < · · · < xn−1 is given by

L(τ ) = C(τ )

W (T )

n−1∏

i=1

f (xi ), (3)

where C(τ ) is some combinatorial constant (see Tajima 1983). If L(τ ) is the mere
likelihood of ranked node depths x1 < · · · < xn−1, then C(τ ) = (n − 1)!, but if L(τ )
is the joint likelihood of the topology, or shape, of τ , again with ranked node depths
x1 < · · · < xn−1, then C(τ ) = 2i(τ ), where i(τ ) is the number of nodes of τ that do
not subtend cherries.

Note that if T is the crown age of τ , that is, the age of its oldest split, then the
likelihood Lc(τ ) (the subscript ‘c’ stands for ‘crown age’) of the reconstructed tree τ
with crown age T, n extant species and node depths x1 < · · · < xn−2 (now there are
only n − 2 node depths strictly smaller than T ), conditional on speciation at time 0
and survival of the two incident subtrees, is the product, properly renormalized, of the
likelihoods of the two reconstructed subtrees conditional on survival, which equals

Lc(τ ) = C(τ )

W (T )2

n−2∏

i=1

f (xi ), (4)

where C(τ ) was defined previously. This formula can be seen as obtained from the
previous one by replacing one of the evaluations of f by W (T )−1 = P(H > T ).
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Note that if the tree with stem (resp. crown) age T is conditioned to have exactly n
tips, then the conditioned likelihoods Ln (resp. Ln

c ) become

Ln(τ ) = C(τ )
n−1∏

i=1

fT (xi ) and resp. Ln
c (τ ) = C(τ )

n − 1

n−2∏

i=1

fT (xi ), (5)

where fT (x) dx = P(H ∈ dx | H < T ), that is, fT (x) = f (x)W (T )/(W (T )− 1).
Indeed, for the crown age, the probability to have n tips conditional on two ancestors
each having alive descendance at T equals (n − 1)P(H < T )n−2 P(H > T )2.

Finally, we stress that all these likelihood formulae can be generalized to situations
when not all extant species of the same clade are included in the tree. Indeed, most
available phylogenies are not complete, in the sense that not all extant species descend-
ing from the same ancestor species are sampled and included in the phylogeny. In the
next paragraph, we show how to compute the likelihood of the reconstructed tree of
phylogenies which have missing extant species.

4.1.3 Likelihood formulae with missing species

There are two main ways considered in the literature of randomly removing tips from
a phylogenetic tree (Lambert and Stadler 2013): the binomial model (Stadler 2009;
Lambert 2009; Stadler 2011; Morlon et al. 2010, 2011; Hallinan 2012) and the n-
sampling model (Stadler 2009; Etienne et al. 2012). Note that we can choose to first
reconstruct the phylogenetic tree (i.e., throw away extinct lineages) and then remove
tips from the reconstructed tree or first remove tips from the phylogenetic tree and
then reconstruct the sampled tree, because both operations commute conditional on
the complete knowledge of the tree (as opposed to trees estimated from molecular
data). In the n-sampling scheme, given a phylogenetic tree (or a reconstructed tree)
with more than n tips, n tips are selected uniformly (e.g., sequentially) and all other
tips are removed. In the binomial sampling scheme, or ρ-sampling scheme, given the
phylogenetic tree (or the reconstructed tree), each tip is removed independently with
probability 1 − ρ, where ρ is the so-called sampling probability. In Sect. 7.2, we will
also consider an extension of this sampling scheme where the sampling probability
depends on the stage (incipient or good) of the tip species.

The n-sampling scheme The tree obtained after n-sampling a coalescent point process
is not a coalescent point process any longer. Assume we start from a coalescent point
process with height T , with coalescent distribution given by some random variable
H , and with a random number of tips N ≥ n. Select uniformly n tips among N
(selecting uniformly one tip among N , then selecting uniformly a second tip among
the remaining N −1, and so on n times). Relabel the n sampled tips 1, 2, . . . , n ranked
in the same order as they were in the initial coalescent point process and set H ′

i the
coalescence time between sampled tip i and sampled tip i + 1, i = 1, . . . , n − 1. By
summing over all possible configurations of sampled tips, it is easy to see that for any
m ≥ 0 and any x1, . . . , xn−1 ∈ [0, T ]
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P(N = n + m, H ′
1 < x1, . . . , H ′

n−1 < xn−1) = n! m!
(n + m)! P(H > T )

×
∑

�m:m0+···+mn=m

P(H < x1)
m1+1 . . . P(H < xn−1)

mn−1+1 P(H < T )m0+mn ,

(6)

where the sum is taken over all possible vectors of non-negative integers �m =
(m0, . . . ,mn) such that m0 + · · · + mn = m.

It is easy to differentiate (6) to get

P(N = n + m, H ′
1 ∈ dx1, . . . , H ′

n−1 ∈ dxn−1)/dx1 . . . dxn−1

= n! m!
(n + m)! P(H > T )

∑

�m:m0+···+mn=m

P(H < T )m0+mn

×
n−1∏

i=1

(mi + 1) f (xi )P(H < xi )
mi .

If we sum directly over all pairs (m0,mn), and if we write xn = T , we get

P(N = n + m, H ′
1 ∈ dx1, . . . , H ′

n−1 ∈ dxn−1)/dx1 · · · dxn−1

= n! m!
(n + m)! P(H > T )

∑

�m:m1+···+mn=m

(mn + 1)P(H < xn)
mn

×
n−1∏

i=1

(mi + 1) f (xi )P(H < xi )
mi .

In other words, the likelihood Ls(τ ) of a reconstructed tree τ with stem age T, n
sampled species, m missing species (i.e., n + m extant species) and node depths
x1 < · · · < xn−1, is given by (writing again xn = T )

Ls(τ ) = L(τ ) n! m!
(n + m)!

∑

�m:m1+···+mn=m

n∏

i=1

(mi + 1)P(H < xi )
mi (7)

where L(τ ) is given by (3). A similar line of reasoning shows that the same correction
factor holds for a reconstructed tree τ with crown age T, n sampled species, m missing
species and node depths x1 < · · · < xn−2, if now we write xn−1 = xn = T .

The binomial sampling scheme The ρ-sampling scheme is trivial to handle in our
situation. Indeed, as is explained by Lambert (2009) and Lambert and Stadler (2013),
the tree obtained after binomially sampling a coalescent point process with coalescent
inverse tail distribution W is, conditional on survival, a new coalescent point process
with coalescent inverse tail distribution Wρ given by

Wρ = 1 − ρ + ρW.
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In Sect. 7.2, we will extend these computations to cases when sampling probability
depends on the stage of the species.

4.2 Another total order

We wish to endow the phylogenetic tree associated with the diversification process
with a total order which should be consistent with the total order on the set of species
defined in Sect. 2. We stress that we think of the phylogenetic tree as a continuous
object embedded in continuous time, whose elements are all timepoints belonging to
edges of the tree, so that this order can be seen as a time-continuous process visiting all
timepoints in the phylogenetic tree, which we call exploration process (Lambert 2010).

Recall that the phylogenetic tree at time T is truncated at time T , in the sense
that all the points at distance greater than T from the root point are removed. The
exploration process starts at the tip of the ancestor species’ edge (at distance from the
root equal to the extinction time of the ancestor species, or T , if the ancestor species
is still extant at time T ) and explores anterior points in this edge, running towards the
root at unit speed, until it reaches the birth node of the youngest daughter species of
the ancestor species born before T ; at this time it jumps to the edge tip of this daughter
species (again, possibly truncated); when the exploration of an edge terminates (it
always terminates at the birth node of this edge), it is immediately followed by the
exploration of the mother edge at that node. The exploration is recursively defined in
this way. This exploration process induces a total order on points of the phylogenetic
tree, where the smallest element is the tip point of the ancestor edge and the largest
element is its base point. In particular, the ultimogeniture order defined in Sect. 2 is
also the order obtained when ranking species in the order where they appear in the
exploration process.

The contour process X of the phylogenetic tree is a process living in [0, T ] and
indexed by the same meaningless time variable as the exploration process. At any
time s, Xs is defined as the distance to the root of the point visited at time s by the
exploration process. Then the contour process has positive jumps (the lifetimes of
species) and derivative −1 everywhere but at jump times (see Fig. 4). As can be seen
in the figure, the contour process can be interpreted as the height of a ball that slips
down the right-hand side of edges of the phylogenetic tree (embedded in the plane) at
unit speed, and bounces back up to the next edge tip on its right each time it encounters
a dashed line.

As was shown by Lambert (2010), this contour process X is a Markov process
which jumps at rate b and makes jumps that are distributed as a species lifetime (that
is, as U + V ), which is truncated to T when a jump overshoots T , and is killed when
it hits 0. The number of visits of T by this process is exactly the number of extant
species at time T . Each time the contour process visits T , it makes a new excursion
below T which can either terminate by hitting 0 (end of the exploration) or by hitting
T (visit of a new extant species). Now recall that the excursions of a Markov process
away from a given point (here, T ) are independent and identically distributed (iid).
Also observe by a quick inspection of Fig. 4 that the coalescence time between two
consecutive species visited by the contour process is exactly the depth of the excursion
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Fig. 4 Top panel a tree with edges in bold and speciation events shown by horizontal dashed lines (all
horizontal edges have zero length); the species born before T are labeled in the ultimogeniture order, and
three zones of the tree are labeled by letters a, b and c. Bottom panel the contour process associated with
the same tree after truncation at time T ; edge labels are reported on top of each corresponding jump; epochs
of visits of zones a, b and c by the contour process are indicated

below T starting at the first of these two visits and ending at the second one. This shows
that, regardless of types, the reconstructed tree of all extant species at T has iid node
depths, all distributed as the depth of an excursion of X below T . In particular, this
ultrametric tree is a coalescent point process, whose coalescent distribution is the law
of the depth of an excursion below T . We record this in the following statement.

Proposition 4.2 Under the protracted speciation model, conditional on at least one
extant species at time T , the reconstructed tree spanned by all species extant at T
regardless of their types is a coalescent point process. The associated coalescent
distribution is the law of the depth of an excursion away from T , made by the stochastic
process X which jumps at rate b(s) when at s, with jump size distributed as Us + Vs,
and has slope −1 everywhere else.
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Now with the last proposition in mind, Eqs. (3) and (5) yield an expression for the
likelihood of reconstructed trees of all extant species under the protracted speciation
model, provided we can compute the associated coalescent distribution. The goal of
the next section is to perform this computation.

5 Computation of the coalescent distribution for the tree spanned by all extant
species

In this section, we treat in detail the case of the tree spanned by all extant species. We
will build on these developments to give a more straightforward treatment of the trees,
spanned by good species and by representative species, in the subsequent section.

From now on, we denote by H the random variable associated with the coalescent
point process of all extant species (see Proposition 4.2), and we set

W (y):= 1

P(H > y)
y ≥ 0,

the inverse of the tail of the coalescent distribution. We now show how to compute
this function in the homogeneous model first, and then in the Markov model. We will
then show how to use either of these methods to treat the constant rate model.

5.1 The homogeneous model: a Laplace transform

In the homogeneous model, neither b nor the law of (U, V ) depend on time. Then W
can be computed from the knowledge of the speciation rate b and from the law of the
total species lifetime �:=U + V .

Let ψ be the so-called Laplace exponent of the process X in the homogeneous
model. The function ψ is a convex function on [0,∞) that characterizes the law of X
and therefore only depends on the law of the total species lifetime �:=U + V and of
the speciation rate b. More specifically,

ψ(s) = s − b + b E(e−s�) = s − b + b

∞∫

0

e−sx P(� ∈ dx) s ≥ 0.

Then it is known (Bertoin 1996) that W is the unique non-negative function g on
[0,∞) satisfying

∞∫

0

e−sx g(x) dx = 1

ψ(s)
, (8)

for all s greater than the exponential growth rate of the tree. The coalescent distribution
can therefore be computed by inverting the previous Laplace transform. Indeed, recall
from Sect. 4 that the density of the coalescent distribution, say f , is then given by
f (y) = W ′(y)/W (y)2.
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5.2 The Markov model: extinction probabilities

Let us turn to the Markov model. Recall that in the Markov model, an incipient species
can become extinct at rateμ1 and can turn into a good species at rate λ1; a good species
becomes extinct at rateμ2; the speciation rate is b, regardless of species type; all these
rates may be nonconstant functions of time.

Convention From now on, rates are expressed backwards from the stem age T , in the
sense that b(t) stands for the speciation rate at absolute time T − t , and similarly for
other rates. In particular, b(0) is the speciation rate at present time.

The important idea behind the contour analysis is that for any integer n smaller
than the total number of tips: (1) all points of the tree visited after the visit of the
(n − 1)-th tip belong to subtrees that are independent of the past of the exploration
process (the part of the tree visited before this visit), and (2) that those subtrees branch
off the lineage joining the root to the (n − 1)-th tip, in a Poissonian manner, with
inhomogeneous intensity b, that is also independent from the past of the exploration
process.

Now the coalescence time between species n − 1 and species n is greater than
y if and only if all subtrees that have branched off this lineage at absolute times
belonging in (T − y, T ), do not have descending species by time T . If q1(t) denotes
the probability that a species in the incipient stage at absolute time T − t has no extant
descending species at absolute time T (extinction probability), then dt b(t) (1−q1(t))
is the probability that there is a subtree sprouting in the interval (T − t, T − t + dt)
and surviving up to T , so that the zero-th term of the Poisson distribution of subtrees
sprouting between T − y and T and surviving up to T equals

P(H > y) = exp

⎛

⎝−
y∫

0

dt b(t) (1 − q1(t))

⎞

⎠ y ≥ 0. (9)

Then the problem moves to characterizing the function q1. We do not have a closed
formula for this function, but we know that the pair (q1, q2) satisfies a system of
Kolmogorov differential equations, where q2(t) is the probability that a species in the
good stage at absolute time T − t has no extant descending species at absolute time
T . This 2D differential equation is given by

{
q̇1 = −(ν1 + b)q1 + λ1q2 + μ1 + bq2

1
q̇2 = −(μ2 + b)q2 + μ2 + bq1q2,

(10)

with initial conditions q1(0) = 0 and q2(0) = 0. Recall that ν1 = λ1 + μ1, and that
all rates b, λ1, μ1, μ2 may depend on time.

Setting g(y):=P(H > y) and recalling that f is the density of H , we get f = −ġ,
and by (9),

ġ = −b(1 − q1)g, (11)
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so that

f (y) = b(y) (1 − q1(y)) exp

⎛

⎝−
y∫

0

dt b(t) (1 − q1(t))

⎞

⎠ y ≥ 0. (12)

If one numerically solves (10), then one can plug q1 into (12) to get f and hence the
likelihood of any reconstructed tree, which is proportional to the product of evaluations
of f at node depths [see e.g. Eq. (3)]. To get f , one can equivalently integrate (11)
[initial condition g(0) = 1] simultaneously with (10), and then use f = b(1 − q1)g
to avoid computing the integral in (12).

If the dependence on t by the instantaneous rates is piecewise constant as by Stadler
(2011), then this numerical method should be particularly stable.

Remark 1 Note that the second equation in (10) can be integrated as

q2(t) =
t∫

0

μ2(y) dy exp

⎛

⎝−
t∫

y

ds μ2(s)

⎞

⎠ exp

⎛

⎝−
y∫

0

ds b(s) (1 − q1(s))

⎞

⎠ .

5.3 The constant rate model: computation of the coalescent distribution and of
extinction probabilities

Recall that the constant rate model can either be seen as a particular case of the
homogeneous model, by specifying the probability distribution of (U, V ) as the one
described in Sect. 2 (U is exponentially distributed with parameter ν1:=λ1 + μ1, V
is independent of U , and either V equals 0, with probability μ1/(λ1 + μ1), or it is
exponentially distributed with parameter μ2), or as a particular case of the Markov
model, by assuming that rates are constant through time.

Seeing the constant rate model as a particular homogeneous model, we can invert
the Laplace transform in (8) after specifying the distribution of (U, V ). Alternatively,
seeing this model as a particular Markov model, we can compute the solution to (10)
with time-constant rates and plug the solution into (9).

Let Q be the following polynomial of degree 2

Q(s) = s2 + (μ2 + ν1 − b)s + ν1μ2 − bμ2 − bλ1.

It is easy to see that Q always has two distinct real roots α < β given by

α = 1

2

(
b − ν1 − μ2 − √

K
)

and β = 1

2

(
b − ν1 − μ2 + √

K
)
,

where K :=(b + μ2 − ν1)
2 + 4bλ1. It is also easy to see that α is always negative, so

that β > 0 if and only if μ2(ν1 − b)− bλ1 = αβ < 0, that is, in the supercritical case.
Actually, it can be shown that in this case, β is the Malthusian parameter of the process
counting the overall number of species (incipient or good). In other words, conditional
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on nonextinction, the overall number of species grows exponentially with exponent
β. Indeed, forthcoming Eq. (16) shows that β is the (only) positive root of ψ , which
is shown by Lambert (2010) to be the Malthusian parameter of the corresponding
branching process.

We now give a closed formula for W , which is the inverse of the tail of the coalescent
distribution for the reconstructed tree of all extant species.

Proposition 5.1 When μ2(ν1 − b)− bλ1 �= 0, we have β �= 0 and then

W (y) = a0 + a1eαy + a2eβy, (13)

where

a0 = μ2ν1

αβ
, a1 = (α + ν1)(α + μ2)

α(α − β)
= b(α + λ1 + μ2)

α(α − β)
,

a2 = (β + ν1)(β + μ2)

β(β − α)
= b(β + λ1 + μ2)

β(β − α)
.

When μ2(ν1 − b)− bλ1 = 0, we have β = 0, α = b − ν1 − μ2, and

W (y) = b0 + b1eαy + b2 yeαy, (14)

where

b0 = ν1μ2

α2 , b1 = 1 − b0, b2 = b(b − μ1)

α
.

We show this proposition by two different methods. Let us first use the results
of the homogeneous model and proceed by Laplace transform inversion. With our
distributions of U and V , we get

E
(

e−s(U+V )
)

= μ1(s + μ2)+ λ1μ2

(s + ν1)(s + μ2)
, (15)

so that

ψ(s) = s Q(s)

(s + ν1)(s + μ2)
. (16)

Elementary calculus then yields

∞∫

0

W (y) e−sy dy = 1

ψ(s)
= (s + ν1)(s + μ2)

s Q(s)
= a0

s
+ a1

s − α
+ a2

s − β
.

Depending on the signs of a0, a1 and a2, we can invert this Laplace transform to get
the announced result that W (y) = a0 + a1eαy + a2eβy . The method is to substract all
terms corresponding to negative coefficients among a0, a1, a2, to equate the Laplace
transforms of two positive functions and conclude by the injectivity argument. For
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example, if a2 ≤ 0 whereas a0, a1 ≥ 0, then y �→ W (y)−a2eβy is a positive function
whose Laplace transform equals s �→ a0

s + a1
s−α , which is the Laplace transform of the

positive function y �→ a0 + a1eαy , hence the equality W (y)− a2eβy = a0 + a1eαy .
We can do the same kind of calculations as previously in the case when β = 0.

Let us now show how to apply the method developed for the Markov model. Note
that here, because of time homogeneity, q1(t) (resp. q2(t)) is the extinction probability
in t time units starting from one incipient species (resp. from one good species),
regardless of the value of starting time. Recall from (9) that

W (y) = exp

⎛

⎝b

y∫

0

dt (1 − q1(t))

⎞

⎠ ,

so that

q1 = 1 − W ′

bW
, (17)

an expression also displayed by Lambert (2011, Lemma 3.1). Plugging this into the
first line in (10), we get

q2 = 1 + (b − ν1)W ′ − W ′′

bλ1W
. (18)

Now if we plug the last two equalities into the second line of (10), we get

W ′′′ + (μ2 + ν1 − b)W ′′ + (ν1μ2 − bμ2 − bλ1)W
′ = 0.

Then W ′ is the solution to a second-order, linear differential equation, whose char-
acteristic polynomial is Q. As a consequence, W ′ indeed is a linear combination of
exponentials with exponents α and β, so that W is a linear combination of exponentials
with exponents 0, α and β. We omit the detailed computation of the coefficients of
this linear combination.

As a side result, we get the following expression for the extinction probabilities
using (17) and (18).

Corollary 5.2 In the constant rate model, as soon as μ2(ν1 − b) − bλ1 �= 0, the
extinction probabilities q1(t) (resp. q2(t)) in t time units starting from one incipient
species (resp. from one good species) are given by

q1(t) = ba0 + a1(b − α)eαt + a2(b − β)eβt

b
(
a0 + a1eαt + a2eβt

) ,

and

q2(t) = bλ1a0 + a1μ2(α + ν1 − b)eαt + a2μ2(β + ν1 − b)eβt

bλ1
(
a0 + a1eαt + a2eβt

) .
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In the critical case, that is, when μ2(ν1 − b) − bλ1 = 0, recall that β = 0, α =
b − ν1 − μ2 < 0, and we get

q1(t) = bb0 − (bb0 + α)eαt − b2(ν1 + μ2)teαt

b (b0 + b1eαt + b2teαt )
,

and

q2(t) = bλ1b0 − (bλ1b0 + αb + μ2
2)e

αt − b2μ
2
2teαt

bλ1 (b0 + b1eαt + b2teαt )
.

Remark 2 In the critical (β = 0) and subcritical (β < 0) cases, we see that the extinc-
tion probabilities increase exponentially fast to 1 as t → ∞. In the supercritical case,
β is positive and the extinction probabilities converge as t → ∞ to the overall extinc-
tion probabilities respectively equal to 1 − (β/b) (when starting from one incipient
species) and to μ2(β + ν1 − b)/(bλ1) (when starting from one good species).

6 The reconstructed trees of good species and of representative species

6.1 The reconstructed tree of good species

We show how to use the contour process to prove that the reconstructed tree of good
species is a coalescent point process. We first make two observations.

First, by the monotonicity property of the coalescent point process, the coalescence
time between two good species i and j is the maximum of coalescence times of all
consecutive pairs of species numbered i, i + 1, . . . , j . So if we can infer from the
contour process which extant species are good and which extant species are incipient,
we will be able to characterize the reconstructed tree of the good species. This the
goal of our second observation, for which we need some notation.

For each species extant at T , we call A its age at time T and U its age when it turns
good (see Fig. 5). If U > A, then the species is still incipient at T , otherwise it is a
good extant species. In terms of the contour process, an extant species corresponds to
a jump starting below T and ending above T (before truncation). The age A of the
corresponding extant species is called the ‘undershoot’ of this jump. Because the triple
of the depth H of the excursion, of the age A of the species by which the excursion
ends and of its age at maturity U , is a function of the same excursion, all the triples
(H, A,U ) running over all extant species, are independent and identically distributed.

Excursions satisfying U ≤ A correspond to good species. Between two such con-
secutive excursions, we have a (geometric) number of excursions satisfying U < A,
and we have to take the maximum of their depths H to get the coalescence time
between the two consecutive good species. If we denote by H g the associated random
variable, we get

P(H g < y) =
∞∑

n=0

P(H < y,U > A)n P(H < y,U ≤ A),

123



The reconstructed tree in the protracted speciation model 387

Fig. 5 An excursion of the contour process away from T , showing its depth H , the undershoot A of its
terminating jump, which is the age of the corresponding extant species (the species whose lifespan traverses
time T ), the age U at which it turned good, and the time V is survived after turning good. In this example,
this extant species is a good species at time T , because U ≤ A

because H g < y if and only if all the depths of in-between excursions (terminating
with a species which is still incipient at T ) are smaller than y. This can be recorded
in the following statement.

Proposition 6.1 Conditional on at least one good species extant at time T , the recon-
structed tree spanned by extant good species is a coalescent point process. Its associ-
ated coalescent distribution is characterized by

P(H g < y) = P(H < y,U ≤ A)

1 − P(H < y,U > A)
. (19)

Recall from (3) and (5) that the knowledge of the coalescent distribution is sufficient
to compute the likelihood of the reconstructed tree of extant good species under the
protracted speciation model. We now show how to perform this computation, in the
same vein as in the previous section.

6.2 Computation of the coalescent distribution for the tree spanned by good extant
species

The following statement shows how to recover the law of H g in the homogeneous
model. Recall that the inverse W g of the tail of the coalescent distribution of good
species is defined by W g(y) = 1/P(H g > y) and that the inverse W of the tail of
the coalescent distribution associated with the tree spanned by all extant species can
be recovered by inverting the Laplace transform (8).

Proposition 6.2 In the homogeneous model, the function W g is given by

W g(y) = W (y)− b

y∫

0

W (y − x) P(U > x) dx . (20)
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Note that the obvious inequality Wg ≤ W implies that P(H g > y) ≥ P(H > y)
for all y, confirming that the node depths of the good species tree are larger than the
node depths of the reconstructed tree of all extant species.

Proof We use the following distributional equation (see e.g. Kyprianou 2006; Lambert
and Trapman 2013) characterizing the joint law of the depth H of an excursion, of the
size D of the jump terminating this excursion, and of the undershoot A of this jump,
in terms of the law of the total species lifetime � = U + V

P(H < y, A ∈ dx, D ∈ dz) = b
W (y − x)

W (y)
dx P(� ∈ dz) 0 ≤ x ≤ min(y, z).

Then we get

P(H < y,U < A) =
y∫

x=0

∞∫

z=x

P(H < y, A ∈ dx,U < x, D ∈ dz)

=
y∫

x=0

∞∫

z=x

P(H < y, A ∈ dx, D ∈ dz) P(U < x | U + V = z)

= b

y∫

x=0

∞∫

z=x

W (y − x)

W (y)
P(� ∈ dz) P(U < x | U + V = z) dx

= b

y∫

x=0

∞∫

z=x

W (y − x)

W (y)
P(U < x,U + V ∈ dz) dx

= b

y∫

x=0

W (y − x)

W (y)
P(U < x,U + V > x) dx .

Similarly, we obtain

P(H < y,U > A) = b

y∫

0

W (y − x)

W (y)
P(U > x) dx .

Equation (20) then simply stems from plugging the last two equalities into (19). �
For the Markov model, we can repeat the same argument as that given in the previous

section, to get

P(H g > y) = exp

⎛

⎝−
y∫

0

dt b(t) (1 − pg
1 (t))

⎞

⎠ y ≥ 0, (21)
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where pg
1 (t) is the probability that a species in the incipient stage at absolute time

T − t has no good descending species extant at absolute time T . Again, we do not
have a closed formula for pg

1 , but the pair (pg
1 , pg

2 ) satisfies the following system of
Kolmogorov differential equations, where pg

2 (t) is the probability that a species in the
good stage at absolute time T − t has no good descending species extant at absolute
time T .

{
ṗg

1 = −(ν1 + b)pg
1 + λ1 pg

2 + μ1 + b(pg
1 )

2

ṗg
2 = −(μ2 + b)pg

2 + μ2 + bpg
1 pg

2 ,
(22)

with initial condition pg
1 (0) = 0 and pg

2 (0) = 1. Note that these boundary values are
the only differences between the previous system (22), satisfied by the probabilities
(pg

1 , pg
2 ), and the system (10) satisfied by the extinction probabilities (q1, q2).

We now turn to the constant rate model. In this case, we can provide a closed
formula for the coalescent distribution. Recall the polynomial Q from the previous
section and its two distinct real roots α < β.

Proposition 6.3 When μ2(ν1 − b)− bλ1 �= 0, we have β �= 0 and then

W g(y) = μ2(ν1 − b)

αβ
+ bλ1

(
αeβy − βeαy

)

αβ(β − α)
y ≥ 0. (23)

When μ2(ν1 − b)− bλ1 = 0, we have β = 0, α = b − ν1 − μ2, and

W g(y) = 1 + bλ1

α2

(
eαy − 1 − αy

)
y ≥ 0. (24)

Proof We first use the method of the homogeneous model. In full generality, we can
always define the function F as the Laplace transform of the non-negative function
W g , that is,

F(s):=
∞∫

0

dy e−sy W g(y) =
∞∫

0

dy e−sy

⎡

⎣W (y)− b

y∫

0

dx W (y − x) P(U > x)

⎤

⎦ .

By (8) and an integration by parts, we get

F(s) = 1

ψ(s)
− b

ψ(s)

∞∫

0

dy e−sy P(U > y)

= 1

ψ(s)
− b

ψ(s)

⎡

⎣1

s
− 1

s

∞∫

0

dy e−sy P(U ∈ dy)

⎤

⎦

= 1

sψ(s)

[
s − b + b E(e−sU )

]
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= 1

s

s − b + b E(e−sU )

s − b + b E(e−s(U+V ))
.

If we are able to invert this Laplace transform, we get a closed form for W g , and
hence for the tail distribution of H g . We have already computed the Laplace transform
of U + V in (15), and trivially E(e−sU ) = ν1/(ν1 + s). Plugging these formulae into
the general expression for the function F yields

F(s) = (s + ν1 − b)(s + μ2)

s Q(s)
= c0

s
+ c1

s − α
+ c2

s − β
,

as soon as β �= 0. Elementary calculus yields

c0 = μ2(ν1 − b)

αβ
, c1 = (α + ν1 − b)(α + μ2)

α(α − β)
= bλ1

α(α − β)
,

c2 = (β + ν1 − b)(β + μ2)

β(β − α)
= bλ1

β(β − α)
.

This allows us to invert the Laplace transform of W g as done in the previous section
to get W g(y) = c0 + c1eαy + c2eβy , which is the announced expression (23). Similar
calculations can be done in the case when β = 0 to get (24). Note that we could have
as well used the expression of W computed in (13) and (14), and plugged them into
(20).

Similarly as for the reconstructed tree of all extant species, we can also apply the
method used in the Markov model. Indeed, because

W g(y) = exp

⎛

⎝b

y∫

0

dt (1 − pg
1 (t))

⎞

⎠

then

pg
1 = 1 − W g′

bW g
,

and it is easily seen that W g′ solves the same second-order, linear differential equation
as W . The solving details are omitted. �

6.3 The reconstructed tree of representative species

We now deal with the case of representative species. Recall from Definition 2.1 the
ultimogeniture order defined on the set of species born before time T , where species a
is smaller than species b if their only respective ancestor species a′ and b′ which were
sisters verify that a′ is younger than b′. Also recall from Definition 2.2 that a repre-
sentative species is either a good extant species or an incipient extant species which is
the first extant descendant of some extinct good species. We want to show that we can
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again use the contour technique to characterize the reconstructed tree of representative
species. Specifically, to ensure that the reconstructed tree of representative species is
a coalescent point process, we have to prove that the event that an extant species is
representative only depends on the excursion of the contour process that precedes its
visit.

Let u denote some extant species. In the previous subsection, we have argued that
the event that an extant species is good or incipient depends only on the corresponding
excursion of the contour process. Roughly speaking, an extant species is good iff the
last jump of the corresponding excursion has a big enough undershoot A, that is, has
U ≤ A. Now we claim that u is representative if there is at least one of its ancestor
species first visited during the corresponding excursion, say a, which is good. Indeed,
if this last event occurs, then species u is representative by definition, because it is the
first extant descendant of all species a satisfying this property, and so is representative
of the most recent one among them. Conversely, if u is representative, then its most
recent good ancestor species, say a (the species it represents), must be visited for the
first time during the excursion. If this was not the case, then a would have another
extant descending species previously visited by the contour process, and by definition
of the contour process, this species would be smaller than u. Then u would not be the
smallest extant descending species of a, which contradicts the fact that u represents
a.

Now we call σ(u) the mother species of u, σ 2(u) its grandmother species, and so
on. We also set J (u) the maximum integer k such that σ k(u) was visited for the first
time during the corresponding excursion. We call A0 the age of u at time T , and for
i ≥ 1, we call Ai the age at which σ i (u) gave birth to σ i−1(u) and Ui the age at
which it turns good. Then u is a representative species iff there is 0 ≤ j ≤ J (u)
such that Ui ≤ Ai . In terms of the contour process, one can detect if an extant
species is a representative species if at least one jump of the future infimum of the
corresponding excursion has a big enough undershoot, that is, has U ≤ A. We can
express this in the following statement, which is the exact analogue of Proposition
6.1.

Proposition 6.4 Conditional on at least one representative species extant at time T ,
the reconstructed tree spanned by extant representative species is a coalescent point
process. Its associated coalescent distribution is characterized by

P(Hr < y) = P(H < y, ∃ 0 ≤ i ≤ J (u),Ui ≤ Ai )

1 − P(H < y, ∀ 0 ≤ i ≤ J (u),Ui ≤ Ai )
.

Unfortunately, we were not able to make a further characterization of the coalescent
distribution in the homogeneous model, as was done in Proposition 6.2 for good
species, so we now turn to the Markov model.

Applying the same arguments as in the last two sections we see that the coalescence
time between two consecutive representative species is greater than y if and only if all
subtrees that have branched off the lineage of the first one at absolute times belonging

123



392 A. Lambert et al.

in (T − y, T ), do not have any good descending species that has extant descending
species by time T . Therefore

P(Hr > y) = exp

⎛

⎝−
y∫

0

dt b(t) (1 − pr
1(t))

⎞

⎠ y ≥ 0, (25)

where pr
1(t) is the probability that a species in the incipient stage at absolute time

T − t does not have any good descending species that has extant descending species
at absolute time T .

Again, the problem moves to characterizing the function pr
1 and is solved by observ-

ing that pr
1 is solution to the following Kolmogorov differential equation, with initial

condition pr
1(0) = 1,

ṗr
1 = −(ν1 + b)pr

1 + λ1q2 + μ1 + b(pr
1)

2, (26)

where we remind the reader that q2(t) is the probability that a species in the good
stage at absolute time T − t has no descending species at absolute time T . Recall
that in the constant rate model, this extinction probability is given by Corollary 5.2.
Otherwise, it can be computed thanks to the two differential equations (10), so that
the coalescent distribution stems from solving a set of 3 differential equations. Recall
that the method proposed in Sect. 3 formally required solving an infinite number of
coupled ODEs and does not allow differences in extinction rates between good and
incipient species.

We have checked the accuracy and efficiency of our method in the case of full
sampling, when the rates are constant and the extinction rate μ does not depend on
species status (μ ≡ μ1 = μ2), for various values of μ and for various values of
the speciation-completion rate λ1. To that purpose, we computed the density of Hr

thanks to (25) after solving numerically for pr
1 thanks to (26). We compared thus

computed density with the empirical distribution of node depths of representative
species obtained from 1000 phylogenetic trees simulated under the forward model
of protracted speciation with the same parameter values. The fit between these two
distributions is shown in Fig. 6.

7 Extensions

7.1 More stages of incipientness

Here, we want to extend the Markov model to a model where species can have a
fixed number, say I − 1, of stages of incipientness, before turning good. Namely, we
assume that newborn species start in state 1 as the first stage of incipientness, 2 the
second stage, until they go through stage I −1, and finally stage I , which is the ‘good’
stage. Assume again that regardless of species status, species give birth (speciate) at
the same rate b. More specifically, λ j is the rate at which a species of type j becomes
type j + 1 (1 ≤ j < I ) and μ j is the extinction rate of species of type j (1 ≤ j ≤ I ).
The notation is chosen to be consistent with the constant rate model, which can be
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obtained by taking I = 2. Actually, we will now see that this model is a particular
case of the homogeneous model treated throughout the paper.

Indeed, this model can also be expressed in terms of the durations V1, . . . , VI of
successive stages. Start with independent random variables U1, . . . ,UI , where U j is
an exponential random variable with parameter ν j :=λ j + μ j if 1 ≤ j ≤ I − 1, and
ν j = μI if j = I . Also let ε1, . . . , εI−1 be independent random variables, where ε j

is a Bernoulli random variable with success probability λ j/ν j . Set

N := min{1 ≤ j ≤ I − 1 : ε j = 0},

which is set to I if this last set is empty. Then we can define Vj :=U j if j ≤ N and
Vj :=0 otherwise, as the stage durations of a typical species. More specifically, the
species terminates its lifetime in state N , its total lifetime duration is U1 + · · · + UN ,
and it is in stage j at age t if V1 + · · · + Vj−1 ≤ t < V1 + · · · + Vj , 1 ≤ j ≤ N . In
particular, the species turns good iff N = I . Actually, this model is a particular case
of the homogeneous model, if we set

U :=V1 + · · · + VI−1 and V = VI ,

so that we can apply results specifically pertaining to the homogeneous model [Eq. (8)
and Proposition 6.2] to this new model. This involves inverting the Laplace transform
(8) and compute the distribution function of U . We leave the details to the interested
reader. Because we do not have specific results in the homogeneous model for the
case of representative species, we now explain how to adapt the arguments expanded
in the case I = 2 to the case I > 2. Similar reasoning leads to an alternative route
as that proposed previously for the treatment of reconstructed trees spanned by all
extant species or by good extant species. This route is detailed explicitly in the next
subsection, in the more general setting where some extant species can be missing.

Assume again that an extant species is representative iff it is the first extant descen-
dant of some good species. Then Eq. (25) still holds, namely

P(Hr > y) = exp

⎛

⎝−
y∫

0

dt b(t) (1 − pr
1(t))

⎞

⎠ y ≥ 0, (27)

where pr
1(t) is the probability that a species in stage 1 at absolute time T − t has no

good descending species that have extant descending species at absolute time T . The
problem is now to characterize the function pr

1. Similarly as in the previous section, the
functions pr

j satisfy the following differential equations, where pr
j (t) is the probability

that a species in stage j at absolute time T − t has no good descending species that
have extant descending species at absolute time T . For any 1 ≤ j ≤ I − 1,

ṗr
j = −(ν j + b)pr

j + λ j pr
j+1 + μ j + bpr

1 pr
j , (28)

with initial condition pr
j (0) = 1, and where pr

I = qI is the probability that a species
in the good stage at absolute time T − t has no extant descending species at absolute
time T .
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To compute this extinction probability qI , we let q j (t) be the probability that a
species in stage j at absolute time T −t has no descending species at absolute time T , so
that the functions q j satisfy the following differential equations. For all 1 ≤ j ≤ I −1,

q̇ j = −(ν j + b)q j + λ j q j+1 + μ j + bq1q j , (29)

and for j = I ,
q̇I = −(μI + b)qI + μI + bq1qI , (30)

with initial conditions q j (0) = 0 for all 1 ≤ j ≤ I , which are the analogues to
Eqs. (10) satisfied by extinction probabilities in the case I = 2. To sum up, there
are 2I − 1 differential equations to solve in order to get the coalescent distribution
(27). First, one has to solve the previous system of I differential equations to compute
the extinction probabilities q j , and then plug qI = pr

I into the system (28) of I − 1
differential equations to get pr

1.

7.2 Missing species

In this subsection, we complete the calculations made in Sect. 4.1.3 for trees with miss-
ing species under a binomial sampling scheme, when sampling probability depends
on species status. We will treat this case only in the Markov model, but for the sake
of completeness, we will consider the full generality of I stages of incipientness, as
in the previous subsection.

From now on, we define ρi as the probability of being sampled at T for an extant
species in stage i . We wish to compute the likelihood of the reconstructed tree of all
sampled species or of sampled representative species. Notice that the reconstructed
tree of (sampled or not) good species can be seen as the reconstructed tree of all
sampled species in the special case when ρi = 0 as soon as i �= I (recall that I is the
stage of good species).

The reconstructed tree of all sampled species (resp. of all representative species) is
again a coalescent point process, and the common density f (resp. fr ) of its typical
node depth H (resp. Hr ) satisfies the same ordinary differential equations as previously,
but with different initial conditions. Let us give a conclusive, self-contained summary
of these results.

We first modify slightly the definitions of the quantities q j (t) and pr
j (t). We now

let q j (t) stand for the probability that a species in stage j at absolute time T − t has
no descending species sampled at absolute time T . The functions q j still satisfy the
differential equations (29) and (30), but with initial conditions q j (0) = 1 − ρi for all
1 ≤ j ≤ I . Recall that it is possible, for example, to recover the probability pg

j that a
species in stage j at absolute time T − t has no good descending species at absolute
time T , by taking ρi = 1 if i �= I and ρI = 0.

Now we let pr
j (t) be the probability that a species in stage j at absolute time

T − t has no good descending species that have extant descending species sampled
at absolute time T . Then the functions pr

j still satisfy the differential equations (28),
again with pr

I = qI , and with the same initial conditions pr
j (0) = 1.
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Now similarly as in Sect. 5, we set g(y):=P(H > y) and gr (y):=P(Hr > y), so
that f = −ġ and fr = −ġr . It is easy to see that

P(H > y) = exp

⎛

⎝−
y∫

0

dt b(t) (1 − q1(t))

⎞

⎠ y ≥ 0,

and that

P(Hr > y) = exp

⎛

⎝−
y∫

0

dt b(t) (1 − pr
1(t))

⎞

⎠ y ≥ 0,

so that

ġ = −b(1 − q1)g and ġr = −b(1 − pr
1)g.

Each of the previous two equations can be solved simultaneously with those satisfied
by the probabilities (qi ) and/or (p j ). Then use f = −ġ = b(1−q1)g and fr = −ġr =
b(1 − pr

1)g.
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