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Fossil evidence suggests that diatoms originated in the late 
Jurassic period but remained rather sparse until the final rift-
ing of Pangaea during the Cretaceous1,2. At this time, there was 

an influx of nutrients to the marine world, owing to increased con-
tinental erosion, which favoured the diversification of large-celled 
marine phytoplankton such as diatoms3. The subsequent drawdown 
in CO2 (ref. 4) and opening of the Southern Ocean gateways, includ-
ing Drake Passage5 and the Tasman Gateway6, resulted in a dynamic 
presence of continental ice sheets7, marking the late Eocene (LE) 
greenhouse–icehouse transition, which, as fossil evidence shows, 
positively affected planktonic species diversity8. The particular suc-
cess of diatoms throughout the Cenozoic has been attributed to an 
expanded bioavailability of silica from increased silicate rock weath-
ering9 and terrestrial grassland expansion10,11, to an influx of nutri-
ent-rich seawater into the South Atlantic brought by the Antarctic 
Circumpolar Current12,13, and generally to conditions in a cool, low-
CO2 planet particularly favourable to diatoms that allowed them to 
outcompete other eukaryotic phytoplankton14. There is, however, 
disagreement about the precise pattern of diversification since the 
Jurassic, as well as its environmental influences2,11,15. Here we take 
a molecular approach to studying diatom diversification through 
time, which allows us to account for heterogeneity in diversifica-
tion dynamics across phylogenetic clades, as well as cryptic species, 
of which there are many in diatoms16. While fossil-based analyses 
have served as the primary means of reconstructing diversification 
dynamics in marine microorganisms17,18, our approach adds a phy-
logenetic dimension to the study of the interplay between species 
evolution and the biotic and abiotic drivers of diversification.

Results and discussion
We used a unique diatom phylogeny built by combining an extensive 
DNA metabarcoding dataset of eukaryotic plankton generated from 
the Tara Oceans expedition19,20 (Supplementary Data 1), a robust 
backbone phylogeny of diatoms constructed with sequences from 
the Protist Ribosomal Reference database21 (Fig. 1, Supplementary 
Data 2), and fossil divergence time estimates from previous  
work (Supplementary Table 1). We produced four maximum clade 

credibility (MCC) phylogenies that corresponded to different align-
ment algorithms and tree construction procedures. Each of them was 
constructed from a set of 26 phylogenies reflecting uncertainty in the 
placement of fossil calibrations (Supplementary Fig. 1, Supplementary 
Data 3). The phylogeny includes 19,197 operational taxonomic units 
(OTUs) at 97% sequence identity (Fig. 1, Supplementary Data 4), 
which includes more than 100 genera and represents all major dia-
tom classes (Supplementary Data 5). It has few unresolved polyto-
mies (< 1% of all branching events) and robust support at most nodes 
(Supplementary Fig. 2). Using Bayesian fits to sample abundance dis-
tributions22, we estimated that the 19,197 OTUs represent ~10% of 
total extant diversity (Supplementary Fig. 3).

We used diversification-rates-through-time analyses23 applied 
to the global diatom phylogeny to identify significant events in the 
evolutionary history of diatoms. Previous work has shown conflict-
ing estimates of the effects of the Cretaceous/Palaeogene (K/Pg)  
mass extinction, with estimates of survival ranging from 37% to 
84% of all diatom species24,25. Likewise, diversification dynamics at 
the Eocene/Oligocene boundary (33.9 million years ago, Ma) are 
debated: diatom diversity either dropped sharply after a diversity 
peak at the boundary26 or increased steadily until the present11. We 
found no major effect on diversification rates of either the K/Pg  
mass extinction or the Eocene/Oligocene transition, but a single 
significant shift in the LE at (40 ±  4) Ma (depending on the MCC 
tree considered), owing to an increase in net diversification and 
decrease in relative extinction (Fig. 1, Supplementary Table 2). This 
shift is broadly consistent with diversity curves reconstructed from 
fossil diatoms9,11 (Fig. 1b).

We sectioned the global phylogeny into a single tree (hereafter 
referred to as the pre-LE tree) dating from the crown (estimated 
at 186 Ma) to the evidential shift at 40 Ma and into multiple sub-
trees from the shift to the present (post-LE trees). This allowed us 
to analyse pre-Cenozoic diatom diversification dynamics and, over 
the past 40 million years, to consider the individual dynamics of 
a large set of clades (128 phylogenies with more than 30 tips). We 
applied time-dependent27 and environment-dependent28,29 diversi-
fication models to these pre- and post-LE trees. We tested specific 
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classical hypotheses about the role of silica weathering, grassland 
expansion (here reflected by declines in land plant diversity), pCO2 
and δ13C trends, and sea level and temperature changes, as well as 
interactions with other plankton groups through consumption (for 
example by ostracods) or competition (for example with radiolar-
ians, coccolithophores, foraminifera, green algae or red algae) in 
shaping diatom biodiversity30 (Supplementary Fig. 4).

Before the Cretaceous, diatom fossils are rare, possibly owing 
to having only lightly silicified frustules2. Therefore, little is known 
about their diversification dynamics during the pre-Eocene green-
house climate. We identify an increase in net diversification rate 
at this time as a result of exponentially increasing speciation rates 
and exponentially decreasing extinction rates (Fig. 2a). During this 
period, pCO2 is the main environmental factor affecting diversifi-
cation (Fig. 2b). We find a negative effect of pCO2 on speciation 
rates, and a positive (or no) effect on extinction rates (depending 
on the build of the phylogeny), which results in an overall nega-
tive effect on net diversification rates (Fig. 2c). We find that time-
dependency is the second best-supported model and there is little 
support for any influence of predators or competitors on diatom 
diversification (Fig. 2b). The result that pCO2 is the primary depen-
dency during this period is robust to uncertainties in our estimates 
of extant diversity (Supplementary Fig. 5), although support for an 
effect of green algae increases (above time-dependency) when we 
consider the upper or lower bounds of estimated extant diversity 
(Supplementary Fig. 5b,e).

Diversification dynamics from the LE to the present reveal 
considerable heterogeneity across diatom clades (Fig. 3a, 
Supplementary Fig. 6a,b). Forty-two per cent of the clades show 
an increase in net diversification towards the present, while 34% 
show a decrease and 24% have constant rates. These dynamics 
contrast sharply with those observed in other eukaryotes, where 

the dominating pattern is either declining31,32 or constant-rate 
diversification33, and suggest that the Cenozoic provided a favour-
able environment for the diversification of diatoms. Estimates of 
net diversification rates at 40 Ma show a sharp increase in diatom 
diversification in the LE in some clades and a drop in others; and 
estimates at present show that 69% of the clades are expanding 
while the rest are on a trajectory of diversity decline (that is, nega-
tive net diversification rate at present; Fig. 3b).

The main drivers of diversification from the LE to the present 
are very diverse across diatom clades (Fig. 4). There is no single 
biotic or abiotic driver: diversification patterns in different post-LE  
trees are dependent on different drivers, and the nature of those 
dependencies is not uniformly positive or negative across clades 
(Fig. 4a–c, Supplementary Fig. 6c,d). This suggests that not only 
have contemporaneous clades been influenced by various biotic 
and abiotic factors, but also some have adapted distinct evolution-
ary strategies in response to the same factor.

Diatoms are well known for their obligate requirement for silicic 
acid and so it has been hypothesized that silica bioavailability has 
had a major influence on their diversification9. We tested this in 
three ways. Silica weathering, the most direct measure of silica bio-
availability to diatoms over time, is best supported in 9% of post-
LE clades (Fig. 4a). Land plant diversity, an inverse proxy for the 
expansion of terrestrial grasses which has led to the dissolution of 
silica-based phytoliths in coastal sediments2, is best supported in 4% 
of post-LE clades with both positive and negative dependencies on 
speciation and extinction. Radiolarian diversity, which fossil analy-
ses have found to have either an antagonistic effect34 or no effect at 
all9 on diatom diversity, is best supported in 8% of post-LE clades, 
with a negative effect on diversification consistent with expectations 
of competition for silicic acid availability. Together, these three fac-
tors contributing to ocean silica biovailability are best supported 
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in 21% of post-LE diatom clades. These results are consistent with  
fossil analyses26 and suggest that silica bioavailability, which is vital 
to diatom survival and influences diversification in some clades, has 
not been the sole or even the principal driver of diatom diversifica-
tion over the last 40 million years.

Sea level change appears as the most important single driver of 
diatom diversification over the last 40 million years: it is best sup-
ported in 27% of all post-LE clades (Fig. 4a–c). The nature of the 
dependency is not consistent, however, with as many clades nega-
tively rather than positively affected by high seawater levels. This 
may explain why diatom, compared to dinoflagellate and coc-
colithophore, fossil diversity has not been found to parallel peaks 
in sea level2. Because sea level affects many aspects of the marine 
biome, it is likely that different diatom clades with distinct ecologies 
have responded to different aspects of sea level change, resulting in 
different dependencies. We also find substantial support for diver-
sification dependencies on temperature changes (Fig. 4a–c), which 
are often used as a general indicator of climate change35 and more 
specifically as a proxy for ocean productivity and stratification36. 
The positive temperature dependencies are driven by negative 
dependencies on speciation, which is consistent with expectations 
of diatom success in colder climates, but negative dependencies on 

extinction as well. Variables associated with the carbon cycle (δ13C 
and pCO2), which have been suggested to be coupled to diatom 
diversity during the Cenozoic11, were not supported in any post-LE 
clades (although this rose to a few clades when upper and lower esti-
mates of extant diversity were considered; Supplementary Fig. 6).

Although pCO2 dependence seemingly played no primary role in 
diatom diversification over the past 40 million years (Fig. 4a–c), it 
played a key role in early diatom diversification (Fig. 2b,c). It is dif-
ficult, however, to disentangle the so-called drive–response nature 
of this negative relationship. The negative relationship between 
pCO2 and net diversification is consistent with previous conclusions 
on Cenozoic fossil data, which attributed the drawdown of atmo-
spheric CO2 to the considerable role that diatoms play in inorganic 
carbon fixation (diatoms as the drive)26. More generally, the early 
diversification of eukaryotic phytoplankton probably contributed 
to the depletion of pCO2 beginning in the late Jurassic1. However, 
increased net diversification of diatoms as a function of decreasing 
pCO2 may instead reflect a direct or indirect effect of pCO2 (pCO2 
as the drive): higher speciation (and/or lower extinction) can occur 
as pCO2 levels decrease towards the phytoplankton productivity–
diversity optimum37; they can also occur under an increasingly cool 
ocean, with amplified latitudinal thermal gradients that result in a 
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turbulent environment for which diatoms are well adapted14, and 
with the presence of icy coasts that are also favourable to diatoms38. 
The absence of correlation between pCO2 and clade diversification 
after the LE suggests that pCO2 is the drive (otherwise the success of 
diatoms after the LE would continue to precipitate pCO2 down), but 
that other drivers, such as sea level change and interspecific compe-
tition, became more prominent as pCO2 levels dropped off.

Interactions with other planktonic groups have been hypoth-
esized to regulate diatom diversity dynamics14. We show a negative 
effect of coccolithophores, radiolarians, and foraminifera on diatom 
diversification over the last 40 million years (Fig. 4a–c), as may be 
expected from competitive effects. Red and green algae show both 
positive and negative effects on diversification depending on the 
diatom clade, which belies the complex co-evolutionary history of 
these algal groups39. We also show a negative effect of ostracods, 
which may reflect benthic-pelagic coupling40, specifically linking 
sinking diatoms to benthic ostracods for consumption. Therefore, 
interactions with other planktonic groups have played significant 
roles in recent diatom diversification.

The evolutionary contexts in which these factors influence 
diversification are framed in the Court Jester Hypothesis41, which 
attributes rates of diversification to global changes in climatic or 
geologic events, and the Red Queen Hypothesis42, which suggests 
that diversification rates are primarily affected by interspecific 
interactions. Biotic factors find little support in the pre-LE tree 
(although, when the upper and lower estimates of extant diversity 
are used in the analyses, green algal diversity finds more support) 
(Fig. 4a–c, Supplementary Fig. 5c,d). After the LE, however, there is 
no clear partiality for diatom clades to be dependent on abiotic or 
biotic factors, with 50% and 44% of clades best supported by each, 
respectively (Fig. 4a–c), which is inconsistent with the supposition 
that abiotic drivers operate at large (million-year) temporal scales 
and biotic at small (that is, thousand-year) ones41,43. Nor do we find 
any difference in the magnitude of the dependencies on abiotic ver-
sus biotic factors (T =  0.50, P =  0.617). Furthermore, clades tend to 
show either a strong cumulative support for abiotic models (47% 
clades with a cumulative support for abiotic > 0.8) or for biotic mod-
els (30% clades with a cumulative support for abiotic < 0.2) rather 
than a shared support between the two (Fig. 4d). Taken together, 

these results suggest that, although the Court Jester and Red Queen 
hypotheses are not mutually exclusive for understanding the evolu-
tion of life, we may expect one or the other to predominate at certain 
periods or in certain clades.

Finally, we find no significant differences in the patterns of 
speciation, extinction or net diversification among the major 
diatom classes (Fig. 5a), Coscinodiscophyceae (polar centrics), 
Mediophyceae (multipolar centrics) and Bacillariophyceae (pen-
nates), based on comparisons of time-integrated rates on the 
0− 40 Ma period (T <  5, P >  0.05); nor do we find any significant 
difference in the distribution of environment-dependencies across 
classes (Kolmogorov–Smirnov D ≤  0.5, P >  0.05) (Fig. 5b). Although 
this classification scheme44–46 is contended47,48 and does not distin-
guish between araphid and raphid pennates, the pervasive patterns 
of diversification and dependencies across all morphotypes sug-
gest that new ecological opportunities that appeared during the LE, 
rather than any morphological invention, were of primary impor-
tance in allowing diatoms to diversify into new niches and adapt to 
new environmental pressures.

Conclusion
We recognize that phylogenetic-based diversification analyses 
have their limitations, including the difficulty of estimating extinc-
tion29,49. They are also fundamentally dependent on the robustness 
and completeness of the phylogenetic data, which remains a major 
challenge in groups as diverse as diatoms. Our study relies on a 
single marker; it also relies exclusively on diatom samples from the 
ocean euphotic zone and is therefore biased against diatom diver-
sity at different ocean depths and in freshwater. In this respect, the 
comparison with fossil data that is not exclusively planktonic (for 
example ostracods and radiolarians) is not ideal. Additionally, phy-
logenetic approaches for testing the effect of palaeoenvironments 
on diversification depend on the datation of both the environmental 
variables and the phylogenies, which both have uncertainties. The 
phylogenetic time calibration, in particular, relies on fossil date esti-
mates. Despite these uncertainties, ambitious global-scale metabar-
coding surveys, such as those provided by the Tara Oceans project, 
begin to allow us to apply to the microbial world tools that have 
been key to our understanding of the evolution of macroorganisms. 
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The consistency of our results across all phylogenetic builds and 
their general accordance with fossil-based work underpin the util-
ity of using large metabarcoding datasets to infer broad-scale mac-
roevolutionary patterns. Future work will ideally go further in the 
integration of molecular and fossil data50.

Our phylogenetic analysis of diatom diversification suggests 
that events that happened in the LE—much more so than the K/Pg  
mass extinction, the Eocene/Oligocene transition, the expansion of 
grasslands, or gross morphological change—have huge implications 
for the evolutionary diversification of diatoms. During the LE, the 
main drivers of diversification changed, from a dominating effect 
of pCO2 throughout the Cretaceous to more heterogeneous depen-
dencies in the past 40 million years, including a marked effect of 
seawater levels, silica bioavailability and competition with other 

planktonic groups. Which particular events drove this shift in dia-
tom diversification in the LE is not clear. This period marked the 
greenhouse–icehouse transition with a complex association of tec-
tonic and climatic effects that our study cannot disentangle, includ-
ing the opening of Drake Passage and the Tasman Gateway, the 
onset of Antartic Circumpolar Current, the expansion of the cryo-
sphere, the cooling of the Southern Ocean and more generally of the 
Earth, and the influx of nutrient-rich Pacific seawater into the South 
Atlantic4,6,7. The low, less variable pCO2 levels correspondent with 
the icehouse Earth initiated in the LE transformed the oceans into 
a cool environment51 advantageous to diatoms14. That the shift in 
diatom diversification occurred ~6 million years before the Eocene/
Oligocene boundary suggests that the rapid drawdown of pCO2, 
waning sea level, and grassland expansion of the LE, which together 
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introduced dynamic ice caps near the poles7,52, lengthened coast-
lines53 and inundated the ocean with silicic acid54,55, were sufficient 
to provide diatoms with new niches to spur speciation and dampen 
extinction. The opening of Drake Passage, in particular, which 
brought an influx of nutrient-rich Pacific seawater into the South 
Atlantic, may have allowed diatoms to diversify into new niches and 
adapt to new ecological and environmental pressures and instituted 
this age of high abundance and cosmopolitanism for diatoms. This 
comports with ecological and fossil data showing a proclivity for 
diatoms in polar and coastal regions20 and the evolutionary success 
of diatoms in a silica-rich environment9. Insofar as macroevolu-
tionary conclusions can inform short-term predictions for climate 
change, we expect that ocean acidification, global increases in sea 
level and temperature, and anticipated mass extinctions of marine 
life will have a variegated effect on diatom biodiversity and will 
favour some clades at the expense of others.

Methods
Constructing the diatom backbone phylogeny. We downloaded all small subunit 
ribosomal RNA sequences taxonomically assigned to diatoms (Bacillariophyta) 
from the Protist Ribosomal Reference database (PR2, accessed June 201721). 

We obtained 3,163 sequences and used them to construct a backbone diatom 
phylogeny (using Bolidomonas pacifica as the outgroup). We aligned these 
sequences using two alignment schemes: (1) the L-INS-i algorithm in MAFFT v.756; 
and (2) CLUSTALW v.257. In each case, we imposed a stringent gap penalty (=  60) 
and subsequently trimmed the alignment using trimAl58. This resulted in a 1,408- 
and 1,411-nucleotide-long alignment. Next, we used jModelTest59,60 to identify 
the substitution model, among a set of five, with which to construct the tree from 
each alignment. Based on corrected Akaike Information Criterion (AICc) scores61, 
the best-fit model for both alignments was GTR. As different tree construction 
methods have unique strengths and weaknesses62, we used two tree construction 
methods on each alignment: (1) RaXML v.863 using the BFGS method to optimize 
GTR rate parameters with the maximum likelihood +  bootstrap approach; and  
(2) FastTree 264 with the GTR model. We therefore generated a total of four 
backbone phylogenies: MAFFT +  RaXML, MAFFT +  FastTree, CLUSTAL +  RaXML, 
CLUSTAL +  FastTree (Supplementary Data 3). We recapitulate the sequence of 
divergence of major diatom morphological clades (radial centrics, polar centrics, 
and araphid and raphid pennates) on the backbone (Fig. 1a)45.

Retrieving diatom OTUs from Tara samples. We used the global metabarcoding 
data (EBI accession number PRJEB16766) generated from 1046 biological samples 
collected from 146 sampling locations across the global ocean euphotic zone 
during the Tara Oceans expeditions65–67. These samples represent a major extension 
of the samples from refs 19,20. Out of these stations, 17% were located within 20 km 
of the coast, where diatoms dominate phytoplankton communities. We retrieved 
the sequences using 85% sequence identity to the V9 reference sequences database; 
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this threshold was chosen based on percentage of conserved positions in diatom 
V9 sequences20. We obtained 2,220,000 V9-18S ribosomal DNA diatom sequences. 
Of these, 220,018 represented unique diatom sequences, each of which was 
given a taxonomic assignment at at least the class level by performing a global 
similarity with V9 reference sequences. The 220,018 unique diatom sequences 
were clustered into biologically meaningful operational taxonomic units (OTUs) 
at a 97% sequence similarity threshold using the default parameters of the Uclust 
software v1.2.22q68. This resulted in 19,197 OTUs. We conducted downstream 
analyses on these 19,197 OTUs, using the longest sequence within each OTU as 
the representative sequence and the taxonomic assignment as that of the most 
abundant V9 sequence (Supplementary Data 5).

Constructing the diatom OTU phylogeny. We constructed a phylogeny for 
the diatom OTUs by combining molecular data from the backbone phylogeny 
(Supplementary Data 2) and the diatom OTUs (Supplementary Data 5). Again, 
we used multiple approaches at the step of the construction to account for the 
possible shortcomings of different approaches, particularly when dealing with 
many short sequences. These included two alignment schemes: (1) we aligned 
the diatom OTUs to the MAFFT backbone alignment with MAFFT using the 
–addfragments option and a stringent gap penalty (=  60); and (2) we aligned the 
diatom OTUs using CLUSTALW, setting the CLUSTALW backbone alignment to 
-PROFILE1 and the diatom OTUs to -PROFILE2, using a stringent gap penalty 
(=  60). We constructed non-ultrametric phylogenies for each alignment using a 
GTR model in FastTree 264. For each alignment, we constructed two phylogenies: 
(1) for the MAFFT alignment, we constructed a phylogeny where the topology 
was constrained using either the MAFFT +  RaXML or MAFFT +  FastTree 
backbone; and (2) for the CLUSTALW alignment, we constructed a phylogeny 
where the topology was constrained using either the CLUSTALW +  RaXML or 
CLUSTALW +  FastTree backbone. In each case, we constrained the topology using 
the perl script TreetoConstraints referenced in ref. 64.

Time-calibrating the diatom OTU phylogeny. We dated the PR2 +  OTU 
phylogeny with PATHd8 v1.9.869 using 13 calibration points (Supplementary 
Data 3), including ten estimates of lineage divergence dates from fossil data, 
a secondary estimate for the crown age of Chaetoceros70, and two secondary 
estimates for diatom crown age. The fossil estimates were placed at the crown 
and stem of each corresponding taxonomic group to give the maximum range 
of plausible dates of appearance. The crown of each taxonomic group was 
defined as the most recent common ancestor node of all sequences assigned to 
that group. The secondary calibrations for diatom crown age were taken from 
two phylogenetic studies1,71. We generated 26 scenarios based on maximum and 
minimum ages for fossil calibrations and the two alternative diatom crown ages. 
We then removed all PR2 lineages from the phylogeny and resolved polytomies  
(< 1% of all branching events) by randomly assigning an order of descent using the 
R function multi2di72 and using an arbitrarily small branch-length of 10−3. In total, 
we constructed 104 phylogenies (26 per backbone) and compiled a maximum 
clade credibility (MCC) phylogeny using TreeAnnotator73 for each backbone 
(Supplementary Data 3). We computed the Jensen–Shannon index distances 
between the spectral density profiles of the 104 reconstructed phylogenies and 
clustered them using hierarchical and k-medoids clustering74. The distances 
among phylogenies reconstructed from the same backbone were considerably 
lower than the distances between phylogenies reconstructed from different 
backbones (Supplementary Fig. 1). Therefore, analyses were run on the four MCC 
phylogenies only.

Estimating extant diversity. Fitting diversification models to phylogenetic 
data requires accounting for the number of missing data75. To estimate the total 
extant diversity (that is, total number of extant OTUs) of diatoms, we followed 
the Bayesian approach of22. This approach is based on extrapolating sampled 
taxa abundance distributions. We computed a single sampled taxa abundance 
distribution by pooling all sequences from each OTU across all individual samples. 
The approach of ref. 22 is parametric and requires assuming a specific shape for 
the global-scale taxa abundance distribution. We used the log-normal and the 
Sichel distributions, both of which are routinely used to describe microbial taxa 
abundance distributions22,76–78. Following ref. 22, we ran three MCMC chains, 
each of which included 250,000 steps and a burn-in period of 100,000; this has 
been shown to be sufficient for convergence22. We used non-informative prior 
distributions, the parameters of which were found by executing trial MCMC runs 
until the acceptance ratios reached 0.5 in fewer than 4,000 iterations. The diversity 
estimate was computed as the median value of the last 150,000 steps in the three 
chains; we also outputted 95% confidence intervals. The total number of OTUs was 
estimated to be ±174, 518 21,370

86,606. This is higher than that previously reported20. The 
difference in diversity estimates may be explained by our use of both a different 
OTU clustering algorithm and a more complete dataset: our dataset included over 
twice as many samples, sampling stations and unique diatom sequences.

The diversification analyses reported in the main text correspond to diversity 
estimates using the median value for the probability distribution model with the 
lowest deviance information criterion79. We also used a range of diversity estimates 
corresponding to the 95% confidence intervals found with the two distributions. 

The sampling fraction in our analyses was computed as the ratio of all sampled 
OTUs and the global-scale diversity estimate.

Identifying natural shifts in diversification in the diatom phylogeny. We 
searched the phylogeny for natural shifts in diversification using the bd.shifts.
optim function in the R package TreePar23. We searched the entire timespan of the 
phylogeny at 2-million-year intervals for the likelihood of shifts in diversification 
and up to eight mass extinction events, setting the sampling parameter to 
0.11 to account for undersampling in the tree (as estimated above). We used a 
2-million-year interval because it provided the most resolution while keeping the 
computation time reasonable.

Sectioning the phylogeny at 40 Ma. To analyse the diversification of diatoms 
before and after the diversification shift at 40 Ma, we sliced the diatom phylogeny 
into two sections using the treeSlice function from the R package phytools80 and 
our own code: from the crown of the phylogeny until the LE; and from the LE until 
the present. We call the sets of resulting trees the pre-LE tree and post-LE trees, 
respectively. We obtained 285 post-LE trees. We calculated total extant diversity in 
each post-LE tree as above. The median sampling fraction across all post-LE trees 
is similar to that of the full phylogeny (Supplementary Fig. 3).

Taxonomic assignment for the post-LE trees. We gave a taxonomic assignment 
to each OTU as outlined above. The most resolved level for which taxonomy 
assignment was available for all OTUs was at the class level (Coscinodiscophyceae, 
Mediophyceae and Bacillariophyceae). We therefore classified each post-LE 
tree at the class level. Each post-LE was assigned a class if at least 50% of its tips 
corresponded to one of the class-level taxonomies; otherwise, the post-LE tree was 
classified as ‘unassigned’. The taxonomy scheme of the PR2 database is different 
from that of the V9 reference database, as the latter follows the CMB taxonomic 
classification44; for this reason, the morphotype designation (radial centric, polar 
centric, araphid pennate, raphid pennate) was only available for the PR2 sequences. 
Before removing the PR2 sequences from the time-calibrated phylogeny, we 
assigned a morphotype to each OTU tip based on the morphotype of its closest 
PR2 sequence. This morphotyped phylogeny is shown in Fig. 1.

Fitting time-dependent models. We fit time-dependent models of diversification 
to each post-LE tree with more than 30 tips (this resulted in 128 post-LE trees), 
using the RPANDA function fit_bd81 conditioned on stem age. We computed the 
sampling fraction as the ratio of sampled OTUs in a tree and its total estimated 
extant diversity. We set speciation to be a constant or exponential function of 
time; and extinction to be zero, constant or an exponential function of time27. We 
selected the best-fit model as that with the lowest corrected (on number of tips) 
AIC score.

To fit time-dependent models to the pre-LE tree, we modified the fit_bd 
function in RPANDA to properly compute the likelihood of a tree sliced in the 
past. To confirm it worked properly, we simulated 1,000 birth–death trees with 
time-dependent speciation (λ(t) =  0.075e0.05t) and constant extinction (μ(t) =  0.05) 
for 50 million years and then sliced them at 15 million years in the past (average 
initial species richness 3,110). We inferred the speciation and extinction rates of the 
sliced trees using the new function and tested model selection against a constant-
rate birth–death model. We repeated these analyses on the same trees jackknifed at 
10%, 40% and 70% of total tips to confirm that our codes were also accurate in the 
presence of undersampling (Supplementary Fig. 7). For analysis of the pre-LE tree, 
we computed the sampling fraction at present as the ratio of all sampled OTUs and 
the total extant diversity of the diatom phylogeny. We fit time-dependent models 
as above using the new function and conditioned the fit on crown age. We selected 
the best-fit model as that with the lowest AICc.

The direction of the time-dependency, as it pertains to net diversification 
rather than just speciation or extinction, was determined based on whether the 
net diversification slope (obtained from a linear regression of the estimated net 
diversification rate through time) for the best-fit parameters trended positive or 
negative towards the present.

To test for an effect of taxonomy on the different time-dependent 
diversification patterns, we used a one-way ANOVA to compare the speciation, 
extinction and net diversification rates among clades of each taxonomic class. We 
measured speciation, extinction and net diversification rates as the time-integrated 
rates on the 0–40 Myr period (for example ∫ λ ∕t t( )d 40

0

40  for time-integrated 
speciation) using the best supported model.

Fitting environment-dependent models. We fit environment-dependent models 
of diversification to all post-LE trees with more than 30 tips using the RPANDA 
function fit_env28,29,81. We also fit environment-dependent models to the pre-LE 
tree using a modified version of the fit_env function adjusted to accommodate 
time-sliced trees (see above). We fit speciation and extinction rates as exponential 
and linear functions of the palaeoenvironmental curves, accounting for missing 
taxa by applying the relevant sampling fraction as above. For all trees, we 
included three abiotic variables—CO2 based on direct proxy reconstructions82,83, 
δ13C (ref. 84), temperature (pH-adjusted and computed as deviations from 
present-day temperature)82,83 and sea level (based on backstripping)53; and six 
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diversity curves extracted from fossil occurrence data—land plants, red algae 
(Rhodophyceae), green algae (Chlorophyte and Charophyta), coccolithophore, 
ostracoda, foraminifera and radiolaria. Fossil data were compiled from the 
Neptune Database10,85 and diversity curves were estimated at the genus level 
using shareholder quorum subsampling86 at 2-million-year bins. Whereas the 
foraminifera data from the Neptune database are planktonic10,85, the radiolarian 
and foraminifera data include both planktonic and benthic taxa. This sampling 
is not ideal, but in the absence of a purely planktonic fossil record, it is useful 
for reflecting broad trends in global diversity. For post-LE trees, we additionally 
included a curve for silica weathering ratio9, which only includes data as far back 
as 67 million years ago, and used better resolved curves for δ13C (ref. 11), state-
dependent pCO2 (ref. 87) and temperature36. Curves were normalized to avoid 
biases29 and truncated to the appropriate time-periods. See Supplementary Fig. 4 
for plotted curves. For the pre-LE tree, we computed Akaike weights for the model 
fits; for the post-LE trees, best-fit models were selected by AICc scores, as above.

The cumulative support of abiotic versus biotic models was estimated 
using Akaike weights. For each post-LE tree, we calculated the Akaike weights 
for the six abiotic (pCO2, δ13C, temperature, silica weathering ratio, sea level, 
and land plant diversity, which is an inverse proxy for silica transport into 
the ocean) and the six biotic (fossil diversity curves for red algae, green algae, 
coccolithophore, ostracoda, radiolaria and foraminifera) variables. The support 
of each model type (that is, abiotic or biotic) was calculated for each post-LE 
tree as the sum of Akaike weights for the models of that type. We used a t-test to 
estimate significant differences between speciation-rate dependencies in biotic 
versus abiotic models using both the actual and absolute values of the inferred 
dependency parameters.

To test for an effect of taxonomic class on the environment-dependent 
diversification patterns, we used a Kolmogorov–Smirnov test to estimate whether 
the distribution of environmental dependencies across taxonomic classes was 
significantly different between any of the classes. We did this separately for positive 
and negative dependencies.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
All data are included as Supplementary Data, or EBI accession numbers are 
provided.
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