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Abstract.—The dissection of the mode and tempo of phenotypic evolution is integral to our understanding of global
biodiversity. Our ability to infer patterns of phenotypes across phylogenetic clades is essential to how we infer the
macroevolutionary processes governing those patterns. Many methods are already available for fitting models of phenotypic
evolution to data. However, there is currently no comprehensive nonparametric framework for characterizing and comparing
patterns of phenotypic evolution. Here, we build on a recently introduced approach for using the phylogenetic spectral
density profile (SDP) to compare and characterize patterns of phylogenetic diversification, in order to provide a framework
for nonparametric analysis of phylogenetic trait data. We show how to construct the SDP of trait data on a phylogenetic
tree from the normalized graph Laplacian. We demonstrate on simulated data the utility of the SDP to successfully cluster
phylogenetic trait data into meaningful groups and to characterize the phenotypic patterning within those groups. We
furthermore demonstrate how the SDP is a powerful tool for visualizing phenotypic space across traits and for assessing
whether distinct trait evolution models are distinguishable on a given empirical phylogeny. We illustrate the approach in two
empirical data sets: a comprehensive data set of traits involved in song, plumage, and resource-use in tanagers, and a high-
dimensional data set of endocranial landmarks in New World monkeys. Considering the proliferation of morphometric
and molecular data collected across the tree of life, we expect this approach will benefit big data analyses requiring a
comprehensive and intuitive framework.[Laplacian; macroevolution; phylogenetics; primates; tanagers; traits.]

Phylogenetic trait data are essential to understanding
the evolution of biodiversity. They have been used
to identify adaptive radiations (Harmon et al. 2010),
infer stabilizing selection (Hansen 1997; Butler and
King 2004), measure the phenotypic effects of species
interactions (Drury et al. 2018) and environmental
fluctuations (Clavel and Morlon 2017), and generally
to estimate the role of the phylogeny in how traits
evolve over time (Felsenstein 1973). They are critical
to connecting microevolutionary processes of natural
selection to macroevolutionary patterns of phenotypic
evolution (Hansen and Martins 1996).

A wide range of approaches, reflecting the general
interest of trait evolution among evolutionary
biologists, have been developed to infer the mode
and tempo of phenotypic evolution across clades. These
include summary statistics that test for the degree of
phylogenetic signal in trait data, such as Blomberg’s K
(Blomberg et al. 2003), and maximum likelihood-based
techniques that fit models to phylogenetic trait data and
estimate the rate at which traits evolve (see Pennell and
Harmon 2013; Manceau et al. 2016; Lewitus 2018 for a
review of currently available models). These models
rely on the a priori formulation of a phenotypic model,
which currently can be reduced to whether traits evolve
according to a Brownian process along the phylogeny
(Felsenstein 1985), towards a trait optimum (Hansen
1997), as an effect of increasing species diversity (Weir
and Mursleen 2013) or environmental fluctuations
(Clavel and Morlon 2017), or as a result of interspecific

interactions (Drury et al. 2016; Manceau et al. 2016).
Insofar as they represent a fixed set of biological
scenarios, the reliance on parameterized models
ultimately limits our ability to characterize the patterns
of trait evolution along a phylogeny and compare those
patterns between traits independently of predefined
evolutionary processes.

In this article, we introduce an approach for analyzing
phylogenetic trait data that requires no assumptions
about the underlying generative model. This approach
allows for comparisons of the evolutionary histories
of traits evolving within a phylogenetic clade and
the characterization of trait evolution according to an
intuitive graph-theoretical system. Our approach
is based on the spectrum of the normalized
graph Laplacian, which provides a framework for
systematically characterizing and comparing the
distribution of trait data across a phylogenetic tree.
The normalized graph Laplacian has been successfully
utilized in the physical sciences to understand how
signal processes are embedded within a graph (Shuman
et al. 2013) and has been applied to understanding
high-dimensional data produced from, for example,
social networks (Rohe et al. 2011), text classification
(Apté et al. 1994), and image recognition (Zhang and
Hancock 2008). It has also begun to be applied to
the biological sciences to aid in big data analysis of
metabolic networks (Deyasi et al. 2015) and cancer
genomics (Rai et al. 2017). Recently, we introduced an
approach for comparing and characterizing phylogenies
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(Lewitus and Morlon 2016a) using the spectral density
profile (SDP) of the graph Laplacian of the distance
matrix of a phylogeny, the so-called modified graph
Laplacian (MGL), which is able to infer diversification
patterns within a phylogeny, as well as directly compare
patterns between phylogenies, absent any a priori model
specification (Lewitus and Morlon 2016b). Together,
these applications show the strength of applying the
graph Laplacian. However, despite its widespread
utility, no such framework has been developed for
characterizing and comparing phylogenetic trait data.

We first describe how to construct the SDP of
the normalized graph Laplacian for phylogenetic trait
data and demonstrate how to interpret it in terms
of specific properties of phenotypic evolution. We
use simulations to show how the profiles relate to
conventional metrics of phylogenetic signal and models
of trait evolution. We show how to compute the
distance between profiles and cluster phylogenetic trait
data based on those distances. Finally, we illustrate
the utility of this approach for assessing whether
distinct trait evolution models are distinguishable
using the Cetacean phylogeny. We also illustrate the
application of the approach on functional trait data
for tanagers (Thraupidae) and geometric morphometric
data for the endocrania of New World monkeys
(Platyrrhini). We think that such a nonparametric and
comprehensive framework for studying phylogenetic
trait diversification will be a valuable complement to
existing model-based approaches.

MATERIALS AND METHODS

Implementation
Below, we describe how to use the normalized

modified graph Laplacian (nMGL) to construct a SDP
for traits (i.e., unidimensional continuous extant tip
data) on a phylogeny, how to characterize the profile in
terms of evolutionary patterning, and how to compute
the distance between profiles. We implemented these
functionalities in the R package RPANDA freely available
on CRAN (Morlon et al. 2016). In the analyses detailed
below, phylogenies were simulated using the R package
TESS (Höhna 2013); trait data for BM, OU, and ACDC
models were simulated using mvMORPH (mvSIM
function, Clavel et al. 2015) and for DD and MC models
with RPANDA (sim_t_comp function). Blomberg’s K was
computed using phytools (Revell 2012), and morphology
disparity index (MDI) was computed using geiger
(Harmon et al. 2008).

Construction of the SDP for Phylogenetic Trait Data
We aim to provide a nonparametric framework for

characterizing and comparing patterns of phylogenetic
traits (i.e., tip data) for a given phylogeny. We consider a
fully bifurcated tree composed of m terminal branches
(Fig. 1A). We note −→g a vector of unidimensional
continuous extant trait data associated to this tree. We

consider these data as a particular kind of graph, G=
(N,E,w), composed of nodes representing extant species,
edges delineating the relationships between nodes,
and a weight associated to each edge, computed as
w(i,j)=di,j|gi −gj| where di,j is the phylogenetic distance
between tips i and j and gi is the trait value at tip i.
Hence, the weight is a combination of phylogenetic and
trait distances between two extant species. In Lewitus
and Morlon (2016a), the nodes in the graph represent
both extant species and internal splitting events in the
phylogeny; here, we limit the nodes to extant species,
as internal splitting events do not have associated trait
data. We consider� the matrix of weights (Fig. 1B) and D
the degree matrix (the diagonal matrix where diagonal
element i is computed as �i =

∑
k �=i w(i,k)). We construct

the nMGL (see Table 1), defined as D−1/2(D−�)D−1/2,
which is distinguished from the non-normalized graph
Laplacian (D−�) because it is normalized by D. While
the normalized version of the graph Laplacian loses
some information on the size of the graph compared
to the non-normalized version, it is more sensitive to
fine-scale features of the graph (Banerjee and Jost 2008).
Our approach aims to characterize and compare traits on
the same phylogenetic tree (rather than traits between
different phylogenetic trees) and so the size of the
graph (i.e., of the tree) is not important. The nMGL
is a m × m positive semidefinite matrix. It therefore
has m non-negative eigenvalues, n�1 ≥n�2 ≥ ...≥n�m ≥
0 (throughout, the n subscript preceding symbols
highlights that we are considering the normalized graph
Laplacian). We convolve them with a Gaussian kernel
to ensure a continuous distribution (Banerjee and Jost
2008). The SDP of n� from the nMGL, defined as f (x)=
∑

i=1(2��2)−1/2e( −|x−n�i |2
2�2 ), is plotted as a function of

n� as f ∗(x)= f (x)∫
f (y)dy (Fig. 1C). Considering the success

of previous work showing the capacity of spectral
density profiling for differentiating graphs generated
by different processes (Arenas et al. 2006; McGraw
and Menzinger 2008; Banerjee and Jost 2009; Lewitus
and Morlon 2016b), and particularly the framework we
recently introduced for characterizing and comparing
phylogenies based on their SDPs (Lewitus and Morlon
2016a), we hypothesized that the SDP of the nMGL
would be a powerful tool for characterizing and
comparing trait evolution within phylogenetic clades.

Interpreting SDPs for the nMGL
The spectrum of n� computed from the nMGL

represents primarily global properties of the structure
of trait evolution within a phylogenetic clade. Each n�
reflects the connectivity (in terms of edge-length) and
difference in trait value between one tip and all other
tips in a phylogeny. We know from the substantial body
of existing work on the normalized graph Laplacian
that large n� are characteristic of sparse neighborhoods
typical of highly divergent terminal branches (both in
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FIGURE 1. Pipeline for constructing the SDP for the nMGL of phylogenetic trait data. A) Given a phylogenetic tree with m terminal branches
and unidimensional, continuous, extant trait data for m tips, B) take the Hadamard product of the difference matrix of the trait data (|gi −gj|)
and the matrix of phylogenetic branch-lengths between tips (di,j), such that �=di,j|gi −gj| at i �= j and zero along the diagonal. The weighted
MGL, D−�, where D is the degree matrix of �, is computed as the weighted value of (i,j), −�(i,j)=−w(i,j), at i �= j and as

∑
wi,k for i= j.

The normalized MGL (nMGL) is normalized by D, so that nMGL=D−1/2(D−�)D−1/2, resulting in unity along the diagonal and negative the
weighted value of (i,j) divided by the square-root of the product of �i and �j for i �= j. C) The spectral density is obtained by convolving the
eigenvalues, n�, computed from the nMGL with a Gaussian kernel and then plotting the density of n�.

TABLE 1. Glossary of graphical and statistical terms

Symbol Descriptor Significance Value

nMGL Normalized modified
graph Laplacian

The distance matrix of the phylogeny weighted by
the differences in trait values between tips and
normalized by the degree matrix

Positive semidefinite symmetric
matrix

n� Eigenvalues Eigenvalues calculated from the nMGL ∼1<n�≤2
SDP Spectral density profile The density profile of eigenvalues calculated from

the nMGL
Kernel density estimate of n�

n�
∗ Splitter The maximum eigenvalue; reflects bipartiteness

(i.e., monophyletic clustering of trait data)
1<n�

∗ ≤2

n� Fragmenter The skewness of the SDP; reflects discreteness 0<n�<∞
n� Tracer The maximum height of the SDP; reflects

phylogenetic signal
0<n �<∞
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FIGURE 2. Defining phylogenetic trait space. Any phylogenetic
trait data can be placed in a 3D space defined by the splitter (n�

∗),
the fragmenter (n�), and the tracer (n�), which broadly represent
the bipartiteness, discreteness, and phylogenetic signal, respectively,
of the phylogenetic trait data. Hypothetical traitgrams are placed in
the corners of the space, illustrating the types of patterns expected in
those corners. Traitgrams were generated on the same phylogenetic
tree under different trait evolution parameters.

terms of trait value and phylogenetic distance) and
small n� are characteristic of denser neighborhoods
typical of barely divergent terminal branches (Chung
1996; Chen et al. 2004). Additionally, for the normalized
graph Laplacian, 0≤n�≤2 (Bauer and Jost 2013), which
in the case of dense matrices (i.e., no zero entries,
like �) becomes ∼1≤n�≤2 (Banerjee and Jost 2009).
Therefore, as trait differences between closely related
tips become smaller, n�	1 accumulate and, as trait
differences between closely related tips become larger,
n�>1 accumulate. Importantly, trait differences here are
relative, so small (or large) trait differences are only
small (or large) in regard to the distribution of trait
differences across the tree. Also, because the weights
used to compute the nMGL are products of phylogenetic
and trait distances, it is impossible to separate the relative
contribution of each of these distances on the SDP. This is
one of the reasons why the nMGL is useful for comparing
various trait distributions on a given fixed tree (with
fixed phylogenetic distance) and not across different
trees.

We define three summary statistics computed from
the spectrum of n�—the tracer, the fragmenter, and
the splitter—that together define the phylogenetic trait
space. Traits evolved under different evolutionary
scenarios on the same tree occupy different regions of
this space (Fig. 2).

The tracer is the peak height of the SDP, denoted n�,
and computed as the ln-transformed maximum value of
f ∗(x); it represents the iteration of n� around a single

value. Higher tracer values mean smaller differences
between closely related tips (low within-clade variance)
and larger differences between distantly related tips
(high among-clade variance). Therefore, we expect the
tracer to be a good measure of phylogenetic signal. In
order to test this, we compared the tracer to conventional
estimates of phylogenetic signal on trait data simulated
on a phylogenetic tree. We simulated a single birth–death
tree with 100 tips at 20 million years under constant
speciation (0.2) and extinction (0.05) rates (throughout,
rates of speciation and extinction are expressed in event
per lineage per million year) and simulated 500 trait
data sets on that tree under a Brownian motion (BM)
model of trait evolution with variance �2 =0.01 (Cavalli-
Sforza and Edwards 1967), an exponentially accelerating
(AC) model with rate value 	=1.5 and �2 =0.01, an
exponentially decelerating (DC) model with rate value
	=−0.1 and �2 =0.01 (Blomberg et al. 2003; Harmon
et al. 2010), and a white-noise model by randomly
drawing trait values from a normal distribution (with a
mean of zero and standard deviation of one). For each of
the three first models, we set the root value at 0. For each
data set, we estimated Blomberg’s K, which measures the
partitioning of variance using a BM model as reference,
where K>1 means close relatives resemble one another
more than expected under BM, and K<1 means they
resemble one another less (Blomberg et al. 2003), and the
MDI, which is a measure of the difference between the
observed diversity through time curve and that expected
under a BM model, where a higher MDI indicates higher
subclade disparity than expected under a BM model
(Foote 1997; Harmon et al. 2003; Slater et al. 2010). We
fit Ordinary Least Squares regression models between
n� and both Blomberg’s K and MDI for the 500 trait
data sets.

The fragmenter is the skewness of the SDP, denoted n�,
and computed as the ln-transformed 
3



3/2
2

, where
i is the

ordinary ith moment of the distribution; it represents the
relative abundance of small and large n�. As trait space
becomes more clustered, irrespective of phylogenetic
signal, the proportion of small n� increases and so does
the fragmenter. Therefore, we expect the fragmenter
to be a good measure of the discreteness of trait
space. In order to test whether the fragmenter captures
discrete clusters of extant trait data, we simulated a
single birth–death tree with 200 tips at 20 million
years under constant speciation (0.2) and extinction
(0.05) rates and simulated 200 data sets of discrete trait
space under low and high phylogenetic signal. For low
phylogenetic signal, we simulated trait data on four
macroevolutionary landscapes (Boucher et al. 2017), each
defined by a different polynomial function: V(x)=x2,
V(x)=x4 −0.5x2, V(x)=x6 −0.5x2, and V(x)=x8 −0.5x2,
where the landscape is estimated as e−V(x). Here, an
increase in the exponent of the first term generates a
more discretized trait distribution (i.e., a deeper well in
the macroevolutionary landscape). We set �2 =0.5, the
root value equal to 5, and the trait boundaries at [0,10].
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We plotted the landscapes as defined by the polynomial
functions, histograms of the trait data for each landscape
as realized in the simulations, and the SDPs of each data
set. For high phylogenetic signal, we simulated trait data
on the same birth–death tree under a DC model with rate
value 	=−0.6,−0.3,0 and �2 =0.1, where more negative
values of 	 indicate more decelerated rates (Blomberg
et al. 2003; Harmon et al. 2010). This generated trait data
distributed in discrete monophyletic clusters across the
tree. For the low and high phylogenetic signal data sets,
we computed the fragmenter and compared values as a
function of macroevolutionary landscape and of 	.

The splitter is the principal n�, denoted (n�
∗); it

is diagnostic of the disjointedness of a graph, where
larger splitter values imply a more bipartite structure
(Banerjee and Jost 2008; Bauer and Jost 2013). In
macroevolutionary terms, as traits become increasingly
bimodally distributed with a strong phylogenetic
signal, the splitter increases. As n�≤2 for the nMGL,
the splitter	2 when a clade is composed of two
phylogenetically distinct subclades with different mean
trait values. To assess the relationship between the SDP
and differences in mean trait values on a phylogeny,
we simulated a single birth–death tree with constant
speciation (0.2) and extinction (0.05) rates with 200 tips
at 20 million years. We then simulated BM models
(�=0.01) with q differences in mean trait values for
q=0−4 by defining different mean trait values for q+1
monophyletic sets of tips, where the mean trait value for
q0 was randomly drawn from a normal distribution with
a mean value between 0 and 1 (and standard deviation
of one) and subsequent mean trait values were defined
as two-times the previous mean. We then compared
n�

∗ for each set. The value of the splitter is expected
to correlate with the disjointedness of the graph, where
higher values indicate the nMGL is more bipartite and
so can be segregated into two monophyletic groups with
distinct mean trait values (Bauer and Jost 2013). To test
whether there were, in fact, two monophyletic clusters,
we used k-means clustering (for k = 2) on the nMGL
of the phylogenetic trait data. We then calculated the
average branch-length distance between tips in cluster 1
and tips in cluster 2. For phylogenetic trait data that can
be separated into two monophyletic clusters, the average
between-group distance will equal two times the crown
age of the tree. We present this as a heuristic test of the
monophyly of trait values when the splitter 	2. To test
the effect of phylogenetic signal on the splitter value,
we simulated 10 trait data sets with one difference in
mean trait values on a 100-tip constant-rate birth–death
tree as above. We then randomized the distribution of
tip data within each cluster 100 times and compared
the resulting splitter value for the randomized trees
against the original splitter value. We compared the
splitter values for the two-cluster BM data sets and
the randomized two-cluster data sets to 100 data sets
simulated under a simple BM process (with no clusters
and �=0.01).

To test the effect of erroneous data on the nMGL,
we simulated trait data under a BM process on a 100-
tip constant-rate birth–death tree (�=0.01). We tested
both the effect of increasing the amount of error and
increasing the number of tips with error. For the former,
we introduced error on 10% of randomly drawn tips
as a sampling variance equal to n times the standard
error for n=1,2,3. For the latter, we introduced error on
20,30,40,100% of tips as a sampling variance equal to
the standard error. We simulated 100 data sets for each
scenario. We compared the resulting splitter, tracer, and
fragmenter values to BM data sets (�=0.01) and ACDC
data sets (	=−1.1,�=0.01) simulated on the same tree
and with no introduced error.

Clustering nMGLs from Their SDPs
To demonstrate whether we can distinguish

phylogenetic trait data simulated under trait models
we know are distinguishable, we clustered nMGLs
constructed for trait data on the same phylogeny
under different trait models. To cluster nMGLs, we
computed the Jensen–Shannon distance between SDPs.
The Jensen–Shannon distance is defined as

�(�1,�2)=
√

1
2

KL( f ∗
1 ,f

∗)+ 1
2

KL( f ∗
2 ,f

∗), (1)

where f ∗
1 and f ∗

2 are spectral densities for profiles 1
and 2, f ∗ = 1

2 (f ∗
1 +f ∗

2 ), and KL is the Kullback–Leibler
divergence measure for the probability distribution
(Endres and Schindelin 2003). We then cluster the matrix
of Jensen–Shannon distances for each profile pair using
hierarchical clustering with boostrap resampling and k-
medoids clustering using optimal silhouette width, s(i),
which is a measure of the between/within-variance of
each datapoint i assigned to a cluster; data are typically
considered to have a discretized structure, defined
by excessive variance between groups and minimal
variance within groups, at s̄>0.51 (Szekely and Rizzo
2005; Reynolds et al. 2006). In each case, the number of
clusters is not set a priori.

We tested the efficacy of clustering on profiles using
trait data sets simulated on birth–death trees. We
simulated a total of 1500 trait data sets under a BM model
of trait evolution with variance �2 =0.01 (Cavalli-Sforza
and Edwards 1967), an exponentially AC model with
rate value 	=1.5 and �2 =0.01, and an exponentially DC
model with rate value 	=−0.1 and �2 =0.01 (Blomberg
et al. 2003; Harmon et al. 2010). For each model, we set the
root value at 0. We visualized this clustering by plotting
the profiles in a multidimensional space defined by n�

∗,
n�, and n�.

We tested the ability of the SDP to find meaningful
clusters of trait models on different tree shapes
and sizes. To test for the effect of tree shape, we
simulated trait data sets on 200-tip birth–death trees
(with a max age of 20 Ma) with constant speciation
(0.2) and extinction (0.02) rates, with decreasing
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speciation (0.1×e−0.2t) and constant extinction (0.02)
rates, and with increasing speciation (0.1×e0.1t)
and constant extinction (0.05) rates. We conducted
analyses on identical trees without pruning extinct
lineages, resulting therefore in nonultrametric trees, to
test whether the profiles of different models were more
distinguishable on a nonultrametric tree compared to
an ultrametric tree, as is expected from likelihood-based
approaches (Cooper et al. 2015). To test for the effect of
tree size, we simulated 6000 trait data sets under the same
BM, AC, and DC trait model parameters on birth–death
trees with constant speciation (0.2) and extinction (0.05)
rates with 20, 50, 100, 200, and 500 tips (with a max age
of 20 Ma). As above, phylogenies were simulated using
the R package TESS (Höhna 2013) and trait data were
simulated using mvMORPH (Clavel et al. 2015).

Applications
To illustrate our approach, we demonstrate three

applications. First, we used the Cetacean phylogeny
(87 spp.) (Steeman et al. 2009) to illustrate how our
approach can be used to assess the distinguishability of
different trait evolution models in a particular clade. We
simulated six trait models under a range of parameter
values on the Cetacean phylogeny: BM with �2 =0.1−5;
Ornstein–Uhlenbeck (OU) with strength of pull towards
an optimum 
=1–20 and �2 =0.1; exponential diversity-
dependence (DD) with slope parameter r=−1.1to
−0.1 and �2 =0.1; AC with rate value 	=1.1–1.5 and
�2 =0.1; DC with rate value 	=−0.5to−0.1 and �2 =
0.1; and matching competition (MC) with the strength
of competition S=−1.1to−0.1 and �2 =0.1. For each
model, we simulated 500 data sets with the root value
set to zero. For all data sets, we computed the SDP
and clustered them using hierarchical and k-medoid
clustering. Second, we used a tanager phylogeny (350
spp.) (Thraupidae) with 27 phylogenetically corrected
principal component traits (pPC traits) spanning traits
related to song, plumage, and resource-use taken from
Drury et al. (2018) based on original data from Mason
et al. (2014), Wilman et al. (2014), Pigot et al. (2016),
and Shultz and Burns (2017). Ideally, we would have
used nonphylogenetically corrected PCs but these were
not available. We computed the SDPs for the pPC
traits and clustered them using hierarchical and k-
medoid clustering and computed their SDP summary
statistics. Finally, we used a geometric morphometrics
data set consisting of 399 3D Procrustes superimposed
landmarks describing the external brain shape of 48
species of New World monkeys (Platyrrhini) (Aristide
et al. 2016). For each landmark, we computed the
Euclidean distance between each species coordinates
and the clade mean coordinates, in order to reduce the
dimensionality of the data. We computed the SDP for
each of the 399 distance vectors and clustered them
using hierarchical and k-medoid clustering and plotted
their SDP summary statistics in multidimensional space.

In order to test how much information was lost in
this dimensionality reduction (Monteiro et al. 2000;
Uyeda et al. 2015), we also clustered the profiles
computed separately for the coordinates along each
axis. Even though these axes may not necessarily be
aligned with the most biologically meaningful directions
of variation, it is a straightforward and convenient way
of analyzing the data.

RESULTS

Interpreting the SDP for Phylogenetic Trait Data
The shape of the SDP of the nMGL reveals many

aspects characteristic of the underlying evolution of a
trait within a phylogenetic clade. Specifically, the tracer
(peak height, n�), the fragmenter (skewness, n�), and
the splitter (principal n�, n�

∗), of the profile may be
interpreted in terms of the evolutionary history of the
trait (Fig. 2).

The tracer summary statistic represents the peak
height of the SDP. In macroevolutionary terms, this is
indicative of the phylogenetic signal of a trait, where
larger n� indicate more phylogenetic signal (Fig. 3A–C).
We show that the tracer is strongly correlated with
conventional summary statistics of phylogenetic signal,
with n� increasing with Blomberg’s K (y=3.44−4.13x+
1.36x2,R2 =0.96,P<0.01) and decreasing with MDI
(y=−2.65+2.23x−0.34x2,R2 =0.93,P<0.01) (Fig. 3D).
White-noise models fall at the lowest end of tracer values,
converging with AC models simulated with 	=1.5 in
terms of tracer values (Fig. 3).

The fragmenter summary statistic represents the
relative abundance of small versus large n�. In
macroevolutionary terms, larger n� indicate a more
discrete distribution of trait means in trait space. We
show that for trait data simulated on increasingly
discretized macroevolutionary landscapes, SDPs have
correspondingly higher fragmenter values (Fig. 4A–C).
We also show for trait data simulated with DC
models with an increasingly negative rate parameter, 	,
which produce increasingly discretized trait space, that
SDPs have correspondingly higher fragmenter values
(Fig. 4D–F). Notably, the discrete clusters of mean trait
values generated by macroevolutionary landscapes are
generally not monophyletic, whereas those generated by
DC models are monophyletic.

The splitter summary statistic, which is the principal
n� computed from the nMGL, is diagnostic of the
bipartiteness of the nMGL. Specifically, it is indicative
of how easily the graph can be disjointed into two
components. We show that splitter values increase (i.e.,
approaches 2) as the number of monophyletic groups
with different trait means approaches two (Fig. 5A–C).
When groups are defined using k-means clustering (with
k =2) on the nMGL, the average phylogenetic distance
between groups approaches two times the crown age
of the phylogeny when there are two monophyletic
groups, demonstrating that clustering on the nMGL
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a) b) c) d)

FIGURE 3. Interpreting the tracer of SDPs. A) Disparity-through-time plots for traits evolved under an AC, BM, DC, and white-noise model
on the same 100-tip constant-rate birth–death phylogeny. B) Traitgrams and C) SDPs for the phylogenetic traits in (A). Note the different y-axis
range in (C). (D) Pairwise plots of Blomberg’s K and MDI as a function of the tracer for phylogenetic trait data simulated under AC, BM, DC,
and white-noise models. The best-fit regression slopes are shown for each plot.

allows for the recovery of these two groups (Fig. 5D).
Splitter values obtained from the randomized data sets
are similar to those obtained from the original data
sets, suggesting that phylogenetic signal has little effect
on splitter values (Supplementary Fig. S1 available on
Dryad at http://dx.doi.org/10.5061/dryad.6fh81vd).

Importantly, the fragmenter and tracer values are
sensitive to the introduction of erroneous data, although
not dramatically (Supplementary Fig. S2 available on
Dryad). When a considerable amount of sampling
variance (equal to three times the standard error) is
introduced on 10% of tips, fragmenter and tracer values
decrease only slightly. The impact of erroneous data only
becomes appreciable when it is introduced on a large
proportion of tips (≥30%). However, it is only when 100%
of tips are affected by erroneous data that the inference
of fragmenter and tracer values begins to approach that
of AC models (	=1.5), which shows that the nMGL is in
large robust to error-prone data.

Clustering Models of Phylogenetic Trait Data
For the traits simulated on the constant-rate birth–

death trees under the three different trait evolution
models, we found that the SDPs were optimally clustered
into three groups (bootstrap probability>0.95) (Fig. 6A).

Separate clusters could be overwhelmingly (>95%)
assigned to AC, BM, and DC models with an average
silhouette width=0.6. The DC cluster is considerably
farther from the AC and BM clusters than the AC and
BM clusters are from each other, based on Euclidean
distance. Trait models simulated on increasing-rate and
decreasing-rate trees show slightly different abilities
to cluster trait models using SDPs. They also show
different configurations of profiles in multidimensional
space, although this is expected because the nMGL
is computed using the phylogenetic distance matrix,
which is sensitive to tree shape. For the increasing-rate
tree, the profiles were optimally clustered into three
groups (bootstrap probability >0.95), each of which
could be exclusively assigned to either AC, BM, or
DC models with an average silhouette width =0.79
(Fig. 6B). Similarly to the constant-rate tree, the DC
cluster is considerably farther from the AC and BM
than the AC and BM are from each other. For the
decreasing-rate tree, we found two significant clusters
(bootstrap probability >0.95), one of which can be
exclusively assigned to DC models and another that
is a hodgepodge of AC and BM trait models with an
average silhouette width =0.55 (Fig. 6C). When plotted
in multidimensional space, the AC and BM models
simulated on the decreasing-rate tree occupy the same
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a) c)

f)

b)

d)

e)

FIGURE 4. Interpreting the fragmenter of SDPs. A) Histograms of simulated trait values (gray) under four macroevolutionary landscapes
(blue). B) SDPs for phylogenetic trait data simulated under each landscape in (A). C) boxplot of fragmenter values for SDPs generated under
each macroevolutionary landscape in (A). D) Traitgrams of phylogenetic trait data simulated under ACDC models with different rate parameter
values, 	. E) SDPs for the phylogenetic trait data in (D). F) Boxplot of fragmenter values for phylogenetic trait data simulated under each DC
model in (C).

region and are therefore indistinguishable based on their
SDP summary statistics for this tree.

For the constant-rate nonultrametric tree, trait
models are also distinguishable based on hierarchical
and k-medoids clustering (Supplementary Fig. S3A
available on Dryad). The average silhouette width
for clusters of traits on the nonultrametric tree
is 0.82, compared to only 0.6 on the ultrametric
tree (Supplementary Fig. S3B available on Dryad),
which demonstrates that the trait models are more
distinguishable on the nonultrametric tree. We similarly
found trait models to be distinguishable on increasing-
rate (Supplementary Fig. S3C available on Dryad) and
decreasing-rate (Supplementary Fig. S3D available on
Dryad) nonultrametric trees.

We estimated the effects of tree size on SDP summary
statistics. Fragmenter and tracer values increase with
tree size, while splitter values decrease with tree size
(Supplementary Fig. S4A available on Dryad). At 20 tips,
the profiles of AC, BM, and DC models occupy the same
phylogenetic trait space, but at 50 tips the models are

distinguishable (Supplementary Fig. S4B available on
Dryad). While the nMGL loses some information on
the size of the graph compared to the non-normalized
version, clearly there is still some effect of size. This
is likely because size and shape are integrated in
phylogenies.

Applications

Traditionally, likelihood-based models are fit to
phylogenetic trait data and the model showing the best
support is inferred as the generative one. Oftentimes
the difference in support between models is small
and therefore finding traits with similar evolutionary
histories or comparing those evolutionary histories can
be difficult. The ability of our approach to directly
compare the SDPs of the nMGLs of different traits on the
same tree allows us to find clusters of traits with similar
evolutionary histories and then compare those histories
in a multidimensional space defined by interpretable
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a) c)

b) d)

FIGURE 5. Interpreting the splitter of SDPs. A) Phylogenies simulated with 1−4 monophyletic shifts in mean trait values and no shifts in
trait value. Different mean trait values are represented in grey scale. B) Spectral density plots for the phylogenetic trait data in (A). C) Boxplot
of splitter values for phylogenetic trait data simulated under different numbers of monophyletic shifts in mean trait value. D) Boxplot of the
between-cluster branch-length distances (as a ratio over two times the crown age of the tree) for phylogenetic trait data simulated under different
shifts in mean trait value, where clusters are defined by k-means clustering on nMGL (with k = 2). Both splitter and between-cluster branch-length
distance increase as the nMGL approaches bipartiteness (splitter = 2).

parameters without needing to qualify differences based
on estimated likelihoods.

By simulating data sets under different trait models
on the Cetacean phylogeny, we are able to visualize
how distinguishable these models are from one another
under different parameter values (Fig. 7). When all
parameter values are taken together, we are not able to
clearly distinguish between all models using hierarchical
clustering (Fig. 7). While under certain parameter values
each model occupies its own space, there is nonetheless
overlap for parameter values, suggesting that, for the
Cetacean phylogeny, trait evolution under different
phenotypic models are quite similar. Particularly similar
models are DC and DD, although these diverge in
phylogenetic trait space for large parameter values; and
OU and AC, but unsurprisingly, because these two
models are algebraically identical on ultrametric trees
(Uyeda et al. 2015).

We clustered the SDPs for 27 pPC traits in the
tanager phylogeny. We identified two clusters using
hierarchical clustering (bootstrap probability =0.96)
(Fig. 8A); and found the same two clusters using k-
medoid clustering, where the inferred axes explained
69% of variance among the SDPs (Fig. 8B). Cluster
1 was comprised of 10 plumage traits, 6 resource-
use traits, and 1 song trait, whereas Cluster 2 was
comprised of 9 song traits and 1 resource-use trait,
suggesting different evolutionary histories for different
types of traits (Fig. 8B). Cluster 1 showed significantly

higher (T>2.8, P<0.01) splitter, fragmenter, and tracer
values compared to Cluster 2 (Fig. 8C). This suggests
that plumage and resource-use traits have a stronger
phylogenetic signal and evolve into more discrete trait
space, indicative of monophyletic clusters of traits. While
the plumage and resource-use cluster have a significantly
higher splitter value than the song cluster, both have low
splitter values (i.e.,<<2) and therefore little evidence of
bipartiteness.

For the New World monkeys landmark data,
when the analyzed variables were the Euclidian
distances among species for each landmark, they
clustered into three groups according to k-medoid
clustering, with a minimum average silhouette width
of 0.51, and according to hierarchical clustering
(bootstrap probability>0.9) (Fig. 8D). Cluster 1 showed
significantly higher (T>1.96,P≤0.05) fragmenter and
tracer values, suggesting a stronger phylogenetic signal
and evolution into more discrete trait space compared
to the other clusters of landmarks (Fig. 8E). Cluster
2 showed significantly lower fragmenter and tracer
values than the other clusters, suggesting it evolves
with little phylogenetic signal into a more uniform
trait space. Cluster 3 showed intermediary fragmenter
and tracer values, but significantly higher splitter
values, indicative of more bipartiteness. The relationship
between fragmenter and tracer, which is indicative
of the amount of convergence in trait space, shows
that tracer values increase as a function of fragmenter
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a) b)

c)

FIGURE 6. Clustering phylogenetic trait data using the SDP of the nMGL. Hierarchical clustering of SDPs and 3D plotting of SDP summary
statistics for phylogenetic trait data simulated under AC, BM, and DC models of trait evolution on A) a constant-rate birth–death tree, B) an
increasing-rate birth–death tree, and C) a decreasing-rate birth–death tree. The trees are shown as insets. Stars denote bootstrap probabilities
>0.95 at the split.

values faster based on a one-sided t-test (P<0.05) in
cluster 1 compared to clusters 2 and 3, suggesting
lower levels of convergence in cluster 1. Interestingly,
the three clusters broadly correspond to well-defined
brain regions (Fig. 8F). Specifically, cluster 1 comprises
landmarks mostly located on the parietal, cerebellar,
and the anterior portion of the frontal region, cluster 2
landmarks mainly correspond to the temporal, occipital,
and stem regions, and cluster 3 comprises landmarks
on the posterior and ventral areas of the frontal
region and parts of the temporal. These results suggest
that different brain regions evolved with different
evolutionary histories. When we clustered the landmark
data along each axis separately, treating the coordinates
as tip data, we identified the same three clusters along
each axis according to k-medoid clustering, with a
minimum average silhouette width for each cluster of

0.46, and according to hierarchical clustering (bootstrap
probability>0.9).

DISCUSSION

We recently introduced an approach for characterizing
and comparing phylogenies using the spectrum of the
graph Laplacian (Lewitus and Morlon 2016a). Here, we
have extended this approach to analyze the evolution
of traits within phylogenetic clades. We have shown
how to compute the SDP of the nMGL for phylogenies
with associated trait data and demonstrated how to use
these profiles to characterize and compare trait data
within a phylogenetic clade. This provides a broad,
scalable framework for characterizing the distribution
of traits within a phylogenetic clade without classifying
those distributions according to predefined models of
phenotypic evolution. This nonparametric approach
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FIGURE 7. SDPs for simulated trait models on the Cetacean phylogeny. Hierarchical clustering and multidimensional plot of SDP summary
statistics for trait data simulated under AC, BM, DC, DD, MC, and OU models under varying parameter values on the Cetacean phylogeny.

therefore provides a complement to existing model-
based approaches to studying phenotypic evolution.

Because the SDP of the nMGL is computed directly
from the phylogeny and trait data, it provides a
comprehensive rendering of the structure of trait
evolution across a phylogenetic clade. Consequently, the
SDPs of different traits on a phylogenetic tree, unlike
likelihood values or summaries of phylogenetic signal,
can be clustered absent any a priori model specification.
We show that this is successful in distinguishing
between phylogenetic trait data generated under
different macroevolutionary processes and sensitive to
the parameter values under which those processes are
generated. Hence, in the same way that SDPs have been
used for identifying principal patterns of diversification
in vertebrates (Lewitus and Morlon 2016b), they can be
used for identifying principal patterns of phenotypic
evolution across multiple traits within clades, as we have
illustrated here with two empirical data sets. SDPs can
also be used to quickly evaluate how distinguishable
different trait evolutionary processes are, as we have
illustrated here on the Cetacean phylogeny. This can be

very useful when developing new models, to make sure
they will be distinguishable before putting all the effort
into the development of likelihood-based inferences for
these models. Similarly, although it is impossible to
separate the relative contribution of phylogenetic and
trait distances on the SDP, it is possible to compare
SDPs for the same trait data across multiple versions
of a phylogeny (e.g., a posterior distribution of trees
generated by Bayesian inference) and thus estimate
the effect of tree construction on inferences of trait
evolution. We can also anticipate that SDPs will be
useful to compute the distance between simulated
and real data in Approximate Bayesian Computation
approaches (Beaumont 2010) for fitting models of
phenotypic evolution that are not amenable to likelihood
computation (e.g., Clarke et al. 2017). Although currently
limited to the analysis of continuous traits, an extension
of the nMGL to incorporate discrete binary traits
would be straightforward: the trait distance between
species would be 0 or 1 if pairs have the same or
a different trait, respectively. Existing work on signed
graph Laplacians (Kunegis et al. 2010), which attach a
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a)

b)

d) e) f)

c)

FIGURE 8. Spectral density profiling of traits in tanagers and New World monkeys. A) Hierarchical and B) k-medoids clustering on the SDPs of
the nMGLs constructed from 27 pPC traits on the tanager phylogeny. Silhouette widths are shown for each pPC trait in the k-medoid clustering.
C) SDP summary statistics for pPC traits within each cluster identified in (A,B). D) Hierarchical clustering of SDPs and multidimensional plot
of SDP summary statistics for 399 landmarks on New World monkey endocrania: cluster 1 (blue), cluster 2 (green), cluster 3 (red). E) Boxplot
of summary statistics for each cluster identified in (D). F) Three-dimensional representation of the New World monkey endocranium with
placement of the clusters of landmarks corresponding to (D).
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positive, negative, or neutral sign to each edge, already
show the potential for using graph Laplacians to explore
graphs with associated discrete values. As there are a
wide range of discrete traits that are the focus of many
macroevolutionary questions (e.g., Beaulieu et al. 2013),
we think development of the nMGL for the analysis
of discrete trait evolution is an important direction for
future work to move in.

When reduced to their constituent properties (i.e.,
splitter, fragmenter, and tracer values), SDPs are useful
in summarizing the structure of phylogenetic trait data
and in visualizing differences between them. The tracer
is a measure of phylogenetic signal and correlates well
with conventional summary statistics. Blomberg’s K, as
a measure of the partitioning of within- versus among-
clade variance, resembles what tracer is measuring,
which is the iteration of n� around a single value. When
within-clade variance is low and among-clade variance
is high, then the majority of n� will have a similar
value, the tracer will be high and so will Blomberg’s K.
The fragmenter measures the discreteness of phenotypic
space. Higher fragmenter values indicate that trait values
are distributed in more discrete groups in phenotypic
space, as would occur under an early burst model of
trait diversification or high levels of convergence to
multiple optima. The relationship between the tracer
and fragmenter gives some indication as to whether
convergence has likely occurred: the ratio of tracer to
fragmenter will be higher if the discretization of trait
values in phenotypic space shows a strong phylogenetic
signal (i.e., in the absence of convergence). We show, for
example, that a two-peak macroevolutionary landscape
results in high fragmenter values, but relatively lower
tracer values than occur under a DC model, indicative
of the high level of phenotypic convergence in the
macroevolutionary landscape model and low level of
phenotypic convergence in the DC model. Of course, we
cannot assign a threshold value for convergence, above
which the tracer to fragmenter ratio conclusively evinces
phenotypic convergence. However, for a given analysis of
different trait data on a tree, we recommend comparing
tracer to fragmenter ratios between analyses, in order to
deduce the comparative levels of convergence between
data sets. Finally, the splitter of the nMGL is diagnostic
of the bipartiteness of the graph and therefore, in
terms of phylogenetic trait data, higher splitter values
indicate a bimodal distribution of trait values with high
phylogenetic signal.

We analyze a previously published data set on pPCs
for tanagers (Drury et al. 2018) to show the usefulness
of clustering phylogenetic trait data to identify and
characterize traits with similar evolutionary histories
among a set. Our result, that the evolution of song-
related traits is distinct from that of plumage- and
resource-use-related traits, is consistent with those
found in Drury et al. (2018) for species that are year-
round territorial and/or found in dense habitats. The
high tracer and fragmenter values in plumage and
resource-use traits suggests the discretized trait space of

these traits possesses a high phylogenetic signal, while
the low tracer and fragmenter values in song traits
suggests low phylogenetic signal and nondiscretized
trait space.

We analyze a data set of 399 landmarks on the
endocrania of 48 species of New World monkeys. We
show that these landmarks cluster into three groups.
Landmarks within each cluster delineate meaningful
regions of the external brain morphology, which
suggests that each of these regions evolved differently.
Cluster 1, which mostly represents the anterior frontal,
parietal, and cerebellar regions, shows these regions
have evolved into a discretized trait space with high
phylogenetic signal, whereas cluster 2, which defines
the temporal, occipital, and stem regions, shows these
regions have evolved in a more uniform space with
low phylogenetic signal. Cluster 3, which defines the
posterior and ventral areas of the frontal region and
part of the temporal region, also shows evidence of these
regions evolving into a discretized trait space, but with
higher levels of convergence than the regions of cluster
1. Previous analysis of these data were conducted under
a penalized-likelihood approach (Clavel et al. 2019)
or a more traditional likelihood-based trait evolution
framework (Aristide et al. 2016), which included
dimensionality reduction of the landmark coordinate
data through Principal Component Analysis and the
use of a few of these PC axes as trait variables. Despite
the differences in approach, our results align well with
the previous analysis, which suggests that, during the
adaptive radiation of New World monkeys, brain shape
evolved first into discrete regions of morphospace, with
subsequent bursts of evolution generating convergence
among clades. Moreover, according to Aristide et al.
(2016), the different stages of this diversification can be
associated to the evolution of particular regions of the
brain. For example, coincident with our results for cluster
1, the anterior frontal region would have diversified
early into discrete trait optima, while convergent changes
would be mostly associated with other areas of the
frontal region, in agreement with our cluster 3. Overall,
our results support the idea that there has been
differential selection on different brain regions in
New World monkeys, due both to an early adaptive
radiation and convergence on ecologically relevant traits
(Rosenberger 1992; Gavrilets and Losos 2009; Aristide
et al. 2015; Aristide et al. 2016).

A major focus of work on phenotypic evolution relates
to the study and identification of coevolving traits using
multivariate models (Clavel et al. 2015). Specifically,
the correlated evolution of multiple traits resulting in
evolutionary integration expects such sets of traits to
have shared evolutionary histories (Goswami 2007). We
would therefore also expect that these traits, whether
they are biologically integrated or coevolving with some
shared variable, will have similar SDPs; and so clustering
profiles may be a way to identify different sets of
integrated traits from multivariate data. This can become
particularly useful when there are many traits, as is more
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often becoming the case with the proliferation of trait
data (e.g., Jones et al. 2009; Hamish et al. 2014).

We have developed an approach, implemented in
user-friendly software, which is a valuable addition to
existing PCMs and provides a new way to analyze and
conceive phenotypic evolution.
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Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.6fh81vd.
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