
LETTERS An individual-based model for the eco-evolutionary emergence

of bipartite interaction networks

Odile Maliet,1*

Nicolas Loeuille2 and Hélène

Morlon1

Abstract

How ecological interaction networks emerge on evolutionary time scales remains unclear. Here we
build an individual-based eco-evolutionary model for the emergence of mutualistic, antagonistic
and neutral bipartite interaction networks. Exploring networks evolved under these scenarios, we
find three main results. First, antagonistic interactions tend to foster species and trait diversity,
while mutualistic interactions reduce diversity. Second, antagonistic interactors evolve higher spe-
cialisation, which results in networks that are often more modular than neutral ones; resource spe-
cies in these networks often display phylogenetic conservatism in interaction partners. Third,
mutualistic interactions lead to networks that are more nested than neutral ones, with low phylo-
genetic conservatism in interaction partners. These results tend to match overall empirical trends,
demonstrating that structures of empirical networks that have most often been explained by eco-
logical processes can result from an evolutionary emergence. Our model contributes to the ongo-
ing effort of better integrating ecological interactions and macroevolution.
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INTRODUCTION

Species in ecological communities engage in a diverse set of
antagonistic and mutualistic interactions such as predation,
parasitism, pollination and seed dispersal. These interactions
are thought to have important consequences for species and
trait diversity (Ehrlich and Raven, 1964; Van Valen, 1973;
Hembry et al., 2014), as well as the structure of ecological net-
works (Bascompte and Jordano, 2007; Thébault and Fon-
taine, 2010; Suweis et al., 2013; Dormann et al., 2017). In
terms of diversity, empirical examples of very diverse commu-
nities seem more numerous in antagonistic (e.g. plant defence
strategies; Futuyma and Agrawal, 2009) than mutualistic
interactions (Hembry et al., 2014; Chomicki et al., 2019). Eco-
evolutionary models have indeed found that antagonistic
interactions foster, while mutualistic interactions impede, trait
diversity (Yoder and Nuismer, 2010). If and how antagonistic
and mutualistic interactions affect the generation and mainte-
nance of species diversity is less clear (Weber et al., 2017).
In terms of the structure of ecological networks, empirical

studies have repeatedly shown that this structure is highly
non-random (Fontaine et al., 2011). Two main patterns have
been reported: modularity, with subsets of species interacting
more strongly among each other than with the rest of the
community (May, 1972; Krause et al., 2003), and nestedness,
with specialist species preferentially interacting with generalists
(Bascompte et al., 2003; Jordano et al., 2003; Lewinsohn
et al., 2006; Bascompte and Jordano, 2007; Thébault and
Fontaine, 2010; Rohr et al., 2014). While several factors play
a role in explaining network structure, including intimacy (i.e.

the degree of physical proximity or integration of partner
taxa; Fontaine et al., 2011) and phylogenetic scale (Beckett
and Williams, 2013), the nature of the interaction seems par-
ticularly important. In a comparison of 95 networks, Fontaine
et al. (2011) showed that non-intimate antagonistic networks
are often modular, while mutualistic networks are often
nested, although there are clearly deviations from this general
pattern (Olesen et al., 2007; Pilosof et al., 2014). Many studies
have sought to explain the processes driving these non-ran-
dom structures without reaching consensus.
One of the main hypotheses put forward for explaining

non-random network structures is the stability hypothesis.
Species-rich communities are not stable when species interact
at random (May, 1972; Krause et al., 2003; Jordano et al.,
2003; Montoya et al., 2006); this instability is counteracted by
non-random network structures that depend on the type of
interaction (Fontaine et al., 2011). In particular, stable species
coexistence is reached in modular networks in the case of
antagonistic interactions, and in nested networks in the case
of mutualistic interactions (Thébault and Fontaine, 2010).
Nestedness reduces effective interspecific competition (Bastolla
et al., 2009) and broadens the range of ecological conditions
under which mutualistic species can coexist (Rohr et al., 2014;
Saavedra et al., 2016; Grilli et al., 2017), especially in the pres-
ence of adaptive foraging (Valdovinos et al., 2016). Anti-mod-
ularity has a destabilising effect in most ecological
communities (Grilli et al., 2016). Nestedness in mutualist net-
works and modularity in antagonist networks also limit co-ex-
tinction cascades (May, 1972; Krause et al., 2003; Memmott
et al., 2004; Stouffer and Bascompte, 2011).
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A second family of hypotheses to explain non-random,
interaction-dependent structures, relies on trait-dependent
interactions. For example, Santamarı́a and Rodrı́guez-Gironés
(2007) and Rezende et al. (2007a) showed that interactions
determined by either phenotypic difference or phenotypic sim-
ilarity can generate nested networks, in particular when sev-
eral traits are involved and when there is a phylogenetic signal
in trait values. de Andreazzi et al. (2019) also recently showed
that a strong effect of species trait values on the probability
for two species to interact helps in explaining network struc-
ture, and in particular that trait matching fosters trait coevo-
lution and helps in explaining the structure of antagonistic
networks. Related to the trait-based hypothesis is the observa-
tion that the non-random structure of networks can emerge
without being selected for when interaction strength is inher-
ited from the parent species (the ‘network spandrel’ hypothe-
sis Maynard et al., 2018; Valverde et al., 2018).
Finally, differences in abundances across species can on

their own generate non-random structures. In a neutral world
where individuals encounter and interact at random with one
another, individuals from rare specialist species are more
likely to interact with individuals from abundant generalists.
As species abundance distributions are generally imbalanced,
with many rare species and a few abundant ones, this leads to
nested networks (Vázquez, 2005; Vázquez et al., 2009; Santa-
marı́a and Rodrı́guez-Gironés, 2007; Krishna et al., 2008;
Staniczenko et al., 2013; Coelho and Rangel, 2018). Hence,
while the often-observed modularity of antagonistic networks
cannot be explained by neutral processes alone, the frequent
nestedness of mutualistic networks can be a pure result of
neutral encounters.
Studies seeking to explain the non-random structure of

species interaction networks have rarely focused on their
emergence over evolutionary time scales, despite empirical
evidence that there are evolutionary (phylogenetic) con-
straints to who interacts with whom (Rezende et al., 2007b;
Elias et al., 2013). They have instead often fixed the ecolog-
ical context, for example by assuming an initial network is
subject to local extinctions (Thébault and Fontaine, 2010),
or fixing the number of species and either the species abun-
dance distribution (Nuismer et al., 2013) or the species trait
distribution (Santamarı́a and Rodrı́guez-Gironés, 2007).
There are notable exceptions though. Minoarivelo and Hui
(2016) used an adaptive dynamics framework to show that
coevolution can lead to both nested and modular networks
for mutualistic interactions. In de Andreazzi et al. (2019)
investigated the effect of trait coevolution on network struc-
ture, with the number of both species and interactions fixed
according to empirical networks. In Poisot and Stouffer
(2016), the authors fitted a macroevolutionary model for-
malising the evolution of species interactions to empirical
networks, and surprisingly did not detect major differences
between antagonistic and mutualistic networks. A recent
study showed that neutral networks can evolve nested struc-
tures, probably as a result of asymmetric abundances, but
did not investigate the effect of mutualistic and antagonistic
interactions (Coelho and Rangel, 2018). Finally, Maynard
et al. (2018) and Valverde et al. (2018) showed that nested-
ness and modularity may emerge from speciation divergence

dynamics within antagonistic networks. The lack of a uni-
fied model mimicking the evolutionary emergence of species
interaction networks as species diversify clearly limits our
understanding of the macroevolutionary dynamics and con-
sequences of inter-species interactions (Weber et al., 2017;
Harmon et al., 2019).
Here we investigate the emergence of ecological networks as

species coevolve, when individuals engage into mutualistic,
antagonistic or neutral interactions. We develop an individ-
ual-based, stochastic eco-evolutionary model (BipartiteEvol)
that allows us to assess the effect of interaction type on spe-
cies and trait diversity, network structure, and phylogenetic
signal in interaction partners. We discuss results obtained
when simulating the model in the light of previous literature
and empirical observations.

METHODS

An individual-based model for the eco-evolutionary emergence of

bipartite interaction networks

We develop an individual-based, stochastic model, with dis-
crete time steps and fixed population size, described in
detail in our Supplementary Information. This model can
be seen as an extension, in two main directions, of the spa-
tially explicit neutral model of biodiversity where dynamics
are modelled on a grid of N cells (Chave and Leigh Jr,
2002). As in the metacommunity version of this model, our
model best represents evolutionary outcomes in a closed
community without immigration. The first extension is that
here each cell is occupied by two individuals, one from
each of two interaction guilds (guild A and B), and this co-
occurrence determines interaction (Canard et al., 2014). The
second extension is that each individual is characterised by
its (potentially multidimensional) trait value, and has a fit-
ness determined by both its trait value and that of the indi-
vidual from the other guild occupying the cell. Offspring
experience mutations that induce genetic differentiation and
small trait deviations from their parents (Loeuille and Lei-
bold, 2014). Genetic differentiation eventually leads to speci-
ation (Manceau et al., 2015; Rosindell et al., 2015). The
nature of the interactions can affect evolutionary outcomes
in an eco-evolutionary feedback loop between who interacts
with whom, the resulting adaptive pressures, and the gain
or loss of interactions linked to adaptations to these pres-
sures. At each time step, we track the trait values of each
individual, their genealogical relationship, whether they
experienced a mutation, and who they interact with. At the
end of the simulations, we construct the resulting species
phylogenies and species interaction networks.

Eco-evolutionary dynamics
We start the simulations with a monomorphic population in
each guild, all descending from a unique parent. At each time
step we update the grid as follows:

• We select one individual from guild A at random and
kill this individual. We record the trait value xB of the
individual of guild B present on this cell.
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• We compute the fitness of all individuals of guild A pre-
sent in the grid, should it interact with an individual of
trait xB.

• We select an individual from guild A to be the parent of
the individual that replaces the killed one with probabili-
ties proportional to each individual fitness. Hence, the
filiation of the new individual depends on trait values
and chance. We do not introduce dispersal limitation
here, but this could be done in future work by selecting
the parent with a probability proportional to its fitness
times a dispersion kernel.

• The new individual from guild A has a probability μA to
experience a mutation, in which case its new trait is
drawn independently in each dimension in a normal dis-
tribution centred on the parental trait with standard
deviation σ. If no mutation occurs, the new individual
inherits the trait value of its parent.

• We repeat the four previous steps for guild B.

• We record the genealogy obtained in each of the two
guilds, as well as the mutations that occurred on this
genealogy.

Modelling the effect of trait-specific interactions on fitness
Each individual is characterised by its trait value x, which can
have any dimension d. The distance in trait space of two inter-
acting individuals determines the effect of the interaction on
their fitness. Classical traits with fitness effects include pro-
boscis and floral tube length, colour preferences, and organism
sizes or phenology in mutualist partners such as plants and
their pollinators, or the presence of metabolic compounds and
the ability to metabolise these compounds in antagonist part-
ners such as plants and their herbivores. For example, a mis-
match in phenology between a plant and its pollinator would
induce a cost in reproductive success for the plant and in the
ability to feed for the pollinator. We use a classical trait match-
ing expression given by a Gaussian function, with maximal fit-
ness effect when the traits of two interacting individuals are
similar (Fig. S1, Loeuille and Loreau (2005); Yoder and Nuis-
mer (2010)). The fitness function is parameterised by α, which
measures the specificity of the trait matching: high α values cor-
respond to scenarios where fitness effects are preponderant in
interactors with very similar trait values (i.e. highly specialised
interactions), while low α values correspond to more neutral
scenarios. Thereafter for simplicity we refer to 1

α as ‘niche
width’. The fitness function is further parameterised by a
parameter r, the ratio between the maximum and minimum fit-
ness, that measures the overall effect of trait differences.
In mutualistic interactions, individuals from both guilds

have higher fitness (WA and WB) when they have similar trait
values:

WA xA,xBð Þ¼ 1

rA�1
þ e�jjxA�xBjj2� α2

A
=2ð Þ

WB xA,xBð Þ¼ 1

rB�1
þ e�jjxA�xBjj2� α2B=2ð Þ

(1)

In antagonistic interactions, individuals from the consumer
clade (B) have higher, and those from the resource clade (A)
lower, fitness when they have similar trait values, so the fitness
differs from the mutualistic scenarios only for clade A:

WA xA,xBð Þ¼ 1

rA�1
þ1� e�jjxA�xBjj2� α2

A
=2ð Þ

WB xA,xBð Þ¼ 1

rB�1
þe�jjxA�xBjj2� α2B=2ð Þ

(2)

We obtained the neutral case by taking α¼ 0 in the expres-
sion for mutualistic fitness (taking α¼ 0 in the antagonistic
version would yield identical simulations).

Defining species and phylogenies
Based on the resulting genealogies with mutations, we define
species following the model of speciation by genetic differenti-
ation (Manceau et al., 2015), except that we allow s, the num-
ber of mutations needed to belong to different species, to vary
[similarly to what is done in Rosindell et al. (2015)]. Species
are thus the smallest monophyletic group of individuals from
the genealogy such that two individuals separated by less than
s mutations belong to the same species. This is a protracted
mode of speciation, and the time needed for speciation to
complete increases with parameter s. This species definition
allows for polymorphic species. We compute the resulting spe-
cies-level phylogenies from the genealogy with mutation posi-
tions (Manceau et al., 2015). Speciation occurs as the result of
accumulating mutations, whatever their effect on the pheno-
type. It can thus merely result from drift, and we expect spe-
cies diversity to build up under neutral dynamics. However, if
trait diversity is favoured – as would be the case if the pres-
ence of predators generates disruptive selection – we expect to
see an increased species diversity as more mutations are likely
to get fixed.

From individuals’ interaction to species interaction networks
The interaction network is defined at the scale of the entire
grid and is based on individuals’ co-occurrence: we consider
that two individuals interact if they co-occur in the same cell.
Next, at the species level, we consider both a quantitative and
a binary network. For the quantitative network, we take the
strength of the interaction between two species to be the num-
ber of pairs of individuals of these species interacting together.
For the binary network, we consider that two species interact
if at least one pair of individuals of these species interact (that
is if their interaction strength in the quantitative network is
non-zero). While interactions in our networks are constructed
based on only co-occurrence, they depend on trait values
through the effect of traits on invasion probabilities. An inter-
action network in our model thus results from the cumulative
effects of smaller scale interaction events (as for example in
Pillai et al., 2011).
We provide codes for running simulations of BipartiteEvol

in RPANDA (Morlon et al., 2016, function sim.Bipar-
titeEvol).

Analysing emerging patterns

In order to explore emerging patterns, we performed a series
of simulations under neutral, mutualistic and antagonistic sce-
narios. We followed the evolution of a (closed) community
made of N¼ 4000 individuals in each guild during 8e7 death
events. This simulation duration was enough for most of the

© 2020 John Wiley & Sons Ltd.
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simulations to have reached stationary state, at least for the
summary statistics we followed (Fig. S2 and S3). We ran most
of our simulations with a trait dimension d¼ 3, as ecological
networks are thought to be best described by traits with sev-
eral yet few dimensions (Eklöf et al., 2013). To check the
robustness of our result to trait dimensionality, we also ran
simulations for d¼ 1 and d¼ 10 for a selected parameter set
(Fig. S28–S34). We chose initial trait values 2 and 0 for guilds
A and B in all trait dimensions. We also chose a standard
deviation σ¼ 1; considering a different σ would be equivalent
to dividing αA and αB by σ. We held the mutation probabili-
ties μA and μB constant at 0.05. We fixed rA at 10 and rB at
þ∞. In the case of mutualistic interactions, this renders spe-
cies from guild B obligate mutualists (their fitness is zero if
they do not interact with species from guild A, e.g. pollinators
that entirely depend on a specific clade of plants) while species
from guild A are facultative mutualists (e.g. plants that can be
pollinated by pollinators not represented in B). In the case of
antagonistic interactions, rB ¼þ∞ means that consumer spe-
cies entirely depend on interaction with their resources.
Besides the neutral case (αA ¼ αB ¼ 0), we simulated all the
combinations of αA and αB in 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1
and 10 for both mutualistic and antagonistic interactions. We
performed 10 simulations for each scenario and each parame-
ter set (20 in the neutral case).
At the end of each simulation, we built the resulting phylo-

genies and interaction networks using three different species
definition thresholds s (s¼ 1, 10 and 50). We computed spe-
cies richness, as well as trait diversity on each trait dimension
as the variance in trait values across all individuals. In addi-
tion, in order to investigate under which conditions trait
coevolution between species on the two sides of the network
occurs, we measured the correlation in trait values of co-oc-
curring individuals. We computed nestedness and modularity
using the R-package bipartite (Dormann et al., 2008;
Almeida-Neto and Ulrich, 2011). Nestedness was measured
with the NODF metric using the function nested, with
method = ‘weighted NODF’ for quantitative networks and
method = ‘NODF2’ for binary networks. Modularity was
computed for quantitative networks only, using the function
computeModules (the corresponding quanBiMo algorithm is
not adapted to binary networks (Dormann and Strauss,
2014)). We compared the binary nestedness values to the dis-
tribution of values obtained for two null models. In the first,
thereafter called NM1, the network connectance is kept con-
stant (method ‘shuffle.web’ in the function nullModel). In the
second, thereafter called NM2, row and column sums of the
interaction matrix are kept constant (method ‘r2d’). This is
equivalent to randomly reassigning a position on the grid for
all individuals regardless of their trait values, which is also
how we generate interactions in our neutral simulations and
provides a way to correct for species abundances. We also
compared the quantitative nestedness and modularity values
to the distribution of values obtained for NM2 (NM1 is appli-
cable to only binary networks). We computed Z-scores,
defined as x�μ

σ , where for a given metric x is the value out-
putted by our simulation, and μ and σ are the mean and stan-
dard deviation of the values under the null model. While Z-
scores are not appropriate for comparing nestedness values

between networks of different sizes (Song et al., 2017), they
are a good way of assessing the significance of nestedness val-
ues against a null model. Finally, we computed the phyloge-
netic signal of interaction partners using a Mantel test that
assesses the significance of the correlation between the phylo-
genetic distance of two species and the dissimilarity of their
interaction partners. In order to limit the effect of species defi-
nition on our results, we used a phylogenetic metric to quan-
tify this dissimilarity. We used the (weighted) fraction of
unshared phylogenetic branch length between the two sets of
interaction partners (computed using quantitative uniFrac
(Lozupone et al., 2007), ‘d_1’ in the function GUniFrac from
the R package GUniFrac (Chen, 2012)). We also performed
the analyses with a non-phylogenetic metric, the Jaccard dis-
similarity index – computed with the function cluster_similar-
ity from the R-package clusteval – for comparison.

RESULTS

Figure 1 shows two typical simulations, one mutualistic and
the other antagonistic, that illustrate general results concern-
ing the evolution of trait values and species interaction net-
works. Other figures in the main text show emergent
properties of mutualistic, antagonistic and neutral networks
when the niche width of species from guild A (i.e. resources in
antagonistic networks and facultative mutualists in mutualistic
networks) varies and that of guild B (i.e. consumers in antag-
onistic networks and obligate mutualists in mutualistic net-
works) is fixed, and for three-dimensional traits. Figures in
the Supplementary Material report results for other parameter
sets, including results when the niche width of species from
guild B varies and that of guild A is fixed, and for trait
dimension d¼ 1 and d¼ 10. Results for these trait dimensions
were qualitatively similar (Fig. S28–S34).

Trait diversity

In mutualistic scenarios, trait values stay fairly constant
through time (Fig. 1a) and trait diversity is lower than in
neutral scenarios (Fig. 2a and Fig. S4). Trait matching in
mutualistic networks results in stabilising selection that con-
strains trait evolution on both sides of the network. Trait
diversity within a guild is generally constrained by niche
width in this guild, but not by niche width in the interacting
guild, even if exceptions occur in extreme cases when niche
width in one of the two guilds is smaller than, or comparable
to, the effect size of mutations (here fixed to σ¼ 1, Fig. 2a
and Fig. S4). The correlation between the traits of interacting
individuals is slightly positive but stays very low (Fig. 2b and
Fig. S5).
Patterns are strikingly different in antagonistic scenarios,

where clusters of traits progressively emerge from co-evolu-
tionary dynamics (Fig. 1b). Disrupting selection acting on
resource species typically increases trait diversity compared to
neutral scenarios for both consumers and resources, with simi-
lar levels of diversity in the two guilds (Fig. 2a and Fig. S4).
Trait diversity increases with the niche widths of both
resource and consumer species, but collapses when consumers
have a larger niche than resources (Fig. 2a and Fig. S4). The
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Figure 1 Example outputs of the eco-evolutionary model for mutualistic (panel a) and antagonistic (panel b) interactions. In each panel, the upper row

shows the evolution of trait values (in a three-dimensional trait space, point colour representing the third trait dimension). The lower row shows the

evolution of interaction networks and associated phylogenies. Darker links in the network correspond to interactions of higher strength; branches in the

phylogenies are coloured according to the value of the trait’s third dimension so that it matches the colours of the corresponding dots in the upper row.

Round dots correspond to species from guild A, square ones to species from guild B.
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traits of interacting individuals are positively correlated, sug-
gesting strong trait coevolution (Fig. 2b and Fig. S5).

Species richness

Consistent with temporal dynamics of trait diversity, species
diversification is lower in mutualistic than antagonistic net-
works (Fig. 1a vs. 1b). Species richness is systematically larger
in antagonistic than in mutualistic networks, regardless of niche
width and species definition (Fig. 2c and d and Fig. S6–S9).
In mutualistic scenarios, species richness tends to be lower

than in neutral scenarios (Fig. 2c and d and Fig. S6–S9). Spe-
cies richness is comparable to what is obtained in the neutral
case when species’ niches are so large that individuals have
approximately the same fitness regardless of who they interact
with. But for narrower niches, trait matching is more influen-
tial and stabilising selection inhibits speciation. Species rich-
ness within a guild thus decreases when niches in that guild
become narrower (Fig. 2c and d and Fig. S6–S9).

In antagonistic scenarios, species richness is in general
higher for resource than for consumer species (Fig. 2c and d
and Fig. S7–S9). The effect of niche width on species richness
depends on the species definition threshold s. For a low s,
resource species richness is similar to what is obtained in neu-
tral simulations and unaffected by niche width of either
resource or consumer species (Fig. 2c and Fig. S7). Consumer
species richness tends to be lower than in neutral simulations
(Fig. 2c and Fig. S7). It is not affected by the niche width of
resource species (Fig. 2c) but decreases when the niches of
consumer species become narrower, as long as it remains lar-
ger than the effect size of mutations. For a higher s (around
50, Fig. 2d and Fig. S9), species richness is affected by niche
width in a similar way for resource and consumer species, and
can be either higher or lower than in neutral simulations.
Cases when species richness is higher than in neutral simula-
tions correspond to scenarios with intermediate resource niche
width, and narrower niche widths for consumer than resource
species (Fig. 2d and Fig. S9).
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Figure 2 Effect of interaction type on the emergence of trait and species diversity. (a) Logarithm of the variance of the first dimension of the species trait as

a function of niche width for guild A (green boxplots) and B (white boxplots). The blue area shows values obtained for neutral simulations (range of

values, quartiles and median). Antagonistic interactions commonly lead to higher, and mutualistic scenarios lower, trait diversity than in neutral

simulations. Results for the other two trait dimensions are similar (results not shown). (b) Correlation of the first dimension of the traits of the interacting

individuals. Traits are consistently positively correlated in antagonistic scenarios, and correlation values stay pretty low in mutualistic ones. Results were

similar for the other two trait dimensions (results not shown). (c) Species richness in each guild for a species definition threshold s¼ 1. Diversity is higher

in antagonistic scenarios than in mutualistic ones but always stays below that obtained for neutral scenarios. (d) Species number in each guild for a species

definition threshold s¼ 50. Diversity is higher in antagonistic scenarios than in mutualistic ones, and a few antagonistic scenarios display a diversity that is

higher than in neutral simulations.
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Network structure

Mutualistic interactions typically lead to the progressive emer-
gence of nested networks (Figure 1a), while antagonistic inter-
actions lead to modular networks (Figure 1b). When we look
at network metrics without any comparison to a null model,
most networks that have higher nestedness values than those
in the neutral case were generated in mutualistic scenarios,
while most of those that have higher modularity values than
those in the neutral case were generated in antagonistic sce-
narios (Fig. 3a and Fig. S10 and S15).
When compared to the null model that corrects for only

connectance (NM1), all networks show up as significantly
nested, including neutral ones (Fig. 3b and Fig. S12, S13, S17
and S18). Z-values are very high and mostly depend on the
diversity of the community, with higher Z-values obtained for
more diverse communities (Fig. S14).
When compared to the null model that corrects for abun-

dance (NM2), neutral models are neither nested nor anti-
nested, and they are not modular either (Fig. 3c and d and
Fig. S19, S20, S22 and S23). Mutualistic networks are similar

to neutral ones. The only deviation occurs when the faculta-
tive mutualists have an intermediate niche width that is larger
than that of the obligate mutualists; in this case, mutualistic
networks are slightly anti-nested and modular (Fig. S19, S20,
S22 and S23). Antagonistic networks deviate sharply from
neutral ones; they most often exhibit a modular, anti-nested
structure that peaks at intermediate resource niche width
(Fig. 3c and d) and small consumer niche width (Fig. S19 and
S22). The results stay qualitatively similar for s¼ 10 (Fig. S20
and S23).

Phylogenetic signal

While modules in antagonistic networks seem strongly con-
strained by phylogenetic history (Fig. 1b), interactions in
mutualistic networks seem rather independent from this his-
tory (Fig. 1a). Indeed, the Mantel correlation between phylo-
genetic distance and similarity in interaction partners is
generally weak and non-significant on both sides of mutualis-
tic networks, comparable to what is found for neutral net-
works (Fig. 4a & b). The correlation is stronger in
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Figure 3 Effect of interaction type on nestedness and modularity (a) Each point shows quantitative modularity and nestedness values for a single simulated

network. The networks that have high nestedness values are mostly mutualistic ones (in green), while those with high modularity values are mostly

antagonistic ones (in red). Blue points show the results for neutral simulations. (b) Z-values for the binary NODF metric corrected by null model NM1 as

a function of niche width. The blue area shows values obtained for neutral simulations (range of values, quartiles and median). All networks show up as

significantly nested. (c) Z-values for the quantitative NODF corrected by null model NM2. Mutualistic and neutral networks have similar levels of

nestedness and are neither significantly nested nor anti-nested. A large proportion of antagonistic networks are significantly anti-nested. (d) Z-values for the

quantitative modularity metric corrected by null model NM2. Mutualistic and neutral networks have similar levels of modularity and are not significantly

modular. Most of the antagonistic networks are significantly modular. Results are shown for a species definition threshold s¼ 1.
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antagonistic networks, and significant in many simulations
(Fig. 4a and b). This phylogenetic signal is often stronger for
resource than for consumer species and higher for an interme-
diate consumer niche width and/or wider resource niche width
(Fig. 4b and Fig. S26). Results are qualitatively similar across
species definition thresholds and dissimilarity metrics,
although fewer networks display significant correlation values
for s¼ 1 than for s¼ 10 and for the Jaccard than for the Uni-
frac metric (Fig. S24–S27).

DISCUSSION

Our model allows a direct comparison of the effect of antago-
nistic, mutualistic and neutral interactions on the dynamics of
trait and species diversity as well as on the structure of the
interaction network. We find that antagonistic interactions
enhance both trait and species diversity, and result in modular
interaction networks with phylogenetic signal in interaction
partners. Mutualistic interactions instead limit trait and spe-
cies diversity, and result in interaction networks that other-
wise resemble neutral networks, with a tendency for
nestedness rather than modularity, and low phylogenetic sig-
nal in interacting partners.
We discuss these results in light of empirical observations,

keeping in mind that our model best mimics eco-evolutionary
dynamics in a closed metacommunity, where diversity is the
result of speciation–extinction dynamics, while most empirical
networks are built at the community level, where diversity can
also be introduced through immigration, which can change
qualitative patterns (as in Maynard et al., 2018). Similar to
what has been done in developments of the neutral biodiver-
sity model, our model could be developed to include dispersal
limitation and to sample local communities at different spatial
scales, or as a continent-island model, where the local commu-
nity receives immigrants from the metacommunity. This
would also help understand how local networks assemble
from ‘meta-networks’ (Gravel et al., 2011; Morlon et al.,
2014). Other limitations of our model include the ‘zero-sum’

assumption that total population size remains constant, not
accounting for sexual reproduction, and not varying the
degree of intimacy, which can all affect network structure.
Our result that antagonistic interactions tend to enhance,

while mutualistic ones impede, trait and species diversity, is
generally consistent with previous empirical and theoretical
studies (Ehrlich and Raven, 1964; Yoder and Nuismer, 2010;
Janz, 2011; Hembry et al., 2014). For example, previous stud-
ies suggest that investment in defence traits results in higher
diversification rates in North American milkweeds (Agrawal
et al., 2009), while specialised pollination in Yucca-moth inter-
actions does not increase Yucca diversification (Smith et al.,
2008). Consistently, Armbruster and Muchhala (2009) showed
that in several groups of angiosperms, diversity promotes flo-
ral specialisation – through character displacement – rather
than the reverse. Still, we do not exclude the possibility that
in some systems mutualism has a positive impact on diversifi-
cation, as has been suggested by other studies, such as in the
case of fig-wasp interactions (Cruaud et al., 2012). Indeed our
model may output different results regarding the effect of
mutualism if we allowed total population sizes to vary and/or
if we accounted for dispersal limitation and/or sexual repro-
duction. Mutualistic interactions may indeed increase the den-
sity of individuals a community can sustain, either through
more efficient feeding and reproduction or by opening new
adaptive zones. This could in turn allow the maintenance of
more diverse communities (Rosenzweig et al., 1995; Emerson
and Kolm, 2005; Joy, 2013). It has also been proposed that
geographical isolation is necessary for mutualism to promote
speciation, and our non-spatial model cannot account for this
potential effect (Thompson and Cunningham, 2002; Kay and
Sargent, 2009). In the case of pollination, mutualistic interac-
tions can also facilitate reproductive isolation, which cannot
be modelled by our asexual model (van der Niet and Johnson,
2012). Our results suggest that mutualism on its own, in the
absence of such mechanisms, is unlikely to promote diversity.
Our model generates clear structural differences between

antagonistic and mutualistic communities. We find that
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Figure 4 Effect of interaction type on phylogenetic signal in interaction partners. (a) Each point shows, for a single simulation, the Mantel correlation

between phylogenetic distance and dissimilarity in interaction partners on both side of the network. The correlation is higher for antagonistic (in red) than

for mutualistic (in green) or neutral (in blue) networks. (b) Mantel P-value as a function of niche width. The blue area shows values obtained for neutral

simulations (range of values, quartiles and median). White boxplots show results for guild A and green boxplots for guild B. Results are shown for the

Unifrac dissimilarity metric and a species definition threshold s¼ 1.
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antagonist interactions generate modular networks, regardless
of whether modularity values are corrected for abundance or
not. This modularity emerges as a response to reciprocal spe-
cialisation and coevolution between resources and consumers,
as demonstrated by the positive correlation between the traits
of interacting partners. Our results regarding nestedness are
much more contingent on whether or not nestedness values
are corrected for connectance and/or abundance. Raw nested-
ness values are higher in mutualistic than neutral (and antago-
nistic) communities, as observed in empirical networks
(Thébault and Fontaine, 2010; Fontaine et al., 2011). When
we do not correct for species abundances, all the networks,
including neutral and antagonistic networks, are significantly
nested. Finally, when we correct for species abundances, nest-
edness values are non-significant for neutral communities, and
either non-significant or significantly lower than those
obtained for the null model for antagonist (and a few mutual-
ist) communities. These results are consistent with the litera-
ture, as most empirical or theoretical studies that found
significant nestedness in bipartite networks did not use a null
model correcting for species abundances (Bascompte et al.,
2003; Lewinsohn et al., 2006; Thébault and Fontaine, 2010),
while those that corrected for abundances did not find a clear
nested pattern (Vázquez, 2005; Staniczenko et al., 2013;
Canard et al., 2014). The nestedness signal observed in bipar-
tite networks may thus well be linked to uneven species abun-
dance distributions, in agreement with the neutral hypothesis
(Vázquez, 2005; Vázquez et al., 2009; Santamarı́a and
Rodrı́guez-Gironés, 2007; Krishna et al., 2008; Staniczenko
et al., 2013; Coelho and Rangel, 2018). In this case, under-
standing differences in raw nestedness values between mutual-
ist, neutral, and antagonist communities boils down to
understanding why communities are increasingly asymmetrical
in abundances as we move from antagonist to neutral and
finally mutualist communities. Under our model, the relatively
low asymmetry of species abundances in antagonist networks
could be linked to the coexistence of several abundant species
facilitated by modular structures. The strong asymmetry of
species abundances in mutualist networks could be linked to
the transient nature of many rare species; we indeed often
observed a single adaptive optimum in our simulated mutual-
ist networks, suggesting that mutants could frequently be mal-
adapted. In addition to this dominating effect of abundance,
trait-based preferential interactions reduce nestedness in
antagonist communities, while this effect is generally insignifi-
cant in mutualist communities in which trait values are quite
constrained. The differences in network structure between
antagonistic and mutualistic communities generated by our
model are consistent with the classical dichotomy between
antagonistic and mutualistic structures (Thébault and Fon-
taine, 2010; Fontaine et al., 2011). While many empirical
examples show that this dichotomy is not as general as once
thought (Olesen et al., 2007; Pilosof et al., 2014), our model
shows that it can emerge from simple evolutionary rules at
the individual level. Relaxing simplifying hypotheses of our
model could provide a more nuanced view. For example, sex-
ual reproduction, spatial structure, fluctuation in population
sizes and intimacy could generate modular mutualistic com-
munities, as is sometimes observed in empirical data (Olesen

et al., 2007), by allowing trait diversification and the creation
of clusters in trait space.
Our results regarding phylogenetic signal, which measures

evolutionary conservatism in interaction partners, are also
consistent with empirical observations for antagonistic com-
munities, in which resource species generally show a stronger
phylogenetic signal than consumer species (Krasnov et al.,
2012; Elias et al., 2013; Fontaine and Thébault, 427 2015). In
plant–herbivore systems, the stronger conservatism in interac-
tion partners seen in plants has sometimes been interpreted as
the combination of factors acting on both sides of the net-
work. Chemical defences in plants are difficult and therefore
slow to evolve and thus display a high phylogenetic conser-
vatism. In herbivores on the contrary, resource shifts among
close relatives to avoid enemies and/or reproductive interfer-
ence are frequent, reducing phylogenetic conservatism (Fon-
taine and Thébault, 2015). However, in our simulations trait
evolutionary rates, which are controlled by the mutation
probability and the effect size of mutations, were symmetrical
between resource and consumer species. We did not include
enemies or reproductive interference either. We instead sug-
gest that the difference in phylogenetic signal between
resource and consumer species is linked to a difference in the
nature of the selection pressure they experience. Resource spe-
cies experience a selection pressure to avoid consumption, and
they can evolve in almost any direction to escape consumers
(only the few directions in trait space favourable to consumers
must be avoided). Consumers instead experience a selection
pressure to evolve specific traits adapted to consuming the
existing resource species, and it is thus not uncommon to see
resource shifts and convergence in traits, even between rather
phylogenetically distant species, which weakens phylogenetic
signal. In mutualistic communities, our model generally does
not display a significant phylogenetic signal. While a tendency
towards lower phylogenetic signal in mutualist compared to
antagonistic communities has been observed in empirical com-
munities (Fontaine and Thébault, 2015), it is significant
(Rezende et al., 2007b). This disconnect between our model
and empirical networks is likely linked to the restricted
evolved trait range produced by our mutualistic model, and
the result could change if sexual reproduction, spatial struc-
ture and/or variable population size were accounted for.
The general qualitative patterns discussed above hold for a

large range of parameter space with a noticeable effect of
niche width – which in our model is closely related to selec-
tion pressures – on the values of the different metrics we mea-
sured. In antagonistic communities, we found the strongest
patterns – for all observed metrics, including diversity, net-
work structure and phylogenetic signal – when niche width is
larger for resources than for consumers. This situation corre-
sponds to the case when selection pressures promote the evo-
lution of specialisation to specific resources in consumers. As
detailed above, this specialisation leads to modular structures,
and imposes a strong disruptive selection pressure on
resources that enhances diversity and strengthens phylogenetic
signal by preventing trait convergence. In mutualistic scenar-
ios, niche width in one guild impacts mostly trait and species
diversity in that guild, but not in the interacting guild; small
niche width indeed results in stronger stabilising selection that

© 2020 John Wiley & Sons Ltd.
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constrains diversity, but does not affect the strength of stabil-
ising selection in the interacting guild. The only cases when
niche width impacts network structure in mutualist networks
occur when there is a very high asymmetry in niche width
between the two guilds, in which case species from the small
niche guild will evolve specialisation in response to the high
trait variability in the large niche guild, leading to the emer-
gence of modular networks that resemble these seen in antag-
onistic scenarios, or some empirical mutualistic networks
(Olesen et al., 2007). The patterns were robust to trait dimen-
sionality, which we did not expect considering previous litera-
ture (Gilman et al., 2012; Ispolatov et al., 2016). Future work
could investigate this aspect more thoroughly, along with add-
ing limits to the trait space and/or a correlation between the
traits. Trait correlations could produce interesting emerging
behaviours, especially if they are asymmetrical between the
two guilds.
Our eco-evolutionary model allowed us to study the effect

of different types of interactions on the emergence of ecologi-
cal networks as species and traits diversify. Despite the sim-
plicity of the processes involved, the model generated clear
differences between mutualistic and antagonistic communities
that are broadly consistent with empirical observations. There
is a lot of room for future developments, such as accounting
for geographical processes (Thompson, 2005), dispersal from
meta- to local communities, and the simultaneous effects of
different interaction types (Fontaine et al., 2011; Montesinos-
Navarro et al., 2017). Developing an inference tool associated
to this model would also be an important step to quantify,
for example the actual effect of trait matching or trait differ-
ences on selection pressures and trait coevolution from empiri-
cal data (Manceau et al., 2017). Such efforts are required if
we want to better understand the macroevolutionary conse-
quences of species interactions (Weber et al., 2017; Harmon
et al., 2019).
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Blum, Elisa Thébault, Leandro Arı́stide, Carmelo Fruciano,
Sophia Lambert, Benoı̂t Perez, Ignacio Quintero, Ana Catar-
ina Silva and Guilhem Sommeria-Klein for their helpful com-
ments on an earlier version of this manuscript. This work was
supported by an AMX grant (from Ecole Polytechique) and
the Labex MemoLife to OM, ANR ARSENIC (grant no. 14-
CE02-012) to NL and the European Research Council (ERC
CoG-PANDA) to HM.

AUTHORS CONTRIBUTION

OM, NL and HM conceived the study. OM wrote the simula-
tion code and performed the analysis. OM, NL and HM
wrote the manuscript.

PEER REVIEW

The peer review history for this article is available at https://
publons.com/publon/10.1111/ele.13592.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no new data
were generated during the current study. The functions for
running the simulations are available in the Rpackage
RPANDA (Morlon et al., 2016).

REFERENCES

Agrawal, A.A., Fishbein, M., Halitschke, R., Hastings, A.P., Rabosky,

D.L. & Rasmann, S. (2009). Evidence for adaptive radiation from a

phylogenetic study of plant defenses. Proc. Natl Acad. Sci., 106,

18067–18072.
Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational

approach for measuring nestedness using quantitative matrices. Environ.

Model. Softw., 26, 173–178.
Armbruster, W.S. & Muchhala, N. (2009). Associations between floral

specialization and species diversity: cause, effect, or correlation? Evol.

Ecol., 23, 159.

Bascompte, J. & Jordano, P. (2007). Plant-animal mutualistic networks:

the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst., 38,

567–593.
Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003). The

nested assembly of plant–animal mutualistic networks. Proc. Natl Acad.

Sci., 100, 9383–9387.
Bastolla, U., Fortuna, M.A., Pascual-Garca, A., Ferrera, A., Luque, B. &

Bascompte, J. (2009). The architecture of mutualistic networks

minimizes competition and increases biodiversity. Nature, 458,

1018–1020.
Beckett, S.J. & Williams, H.T. (2013). Coevolutionary diversification

creates nested-modular structure in phage–bacteria interaction

networks. Interface Focus, 3, 20130033.

Canard, E., Mouquet, N., Mouillot, D., Stanko, M., Miklisova, D. &

Gravel, D. (2014). Empirical evaluation of neutral interactions in host-

parasite networks. Am. Nat., 183, 468–479.
Chave, J. & Leigh, E.G. Jr (2002). A spatially explicit neutral model of -

diversity in tropical forests. Theor. Popul. Biol., 62, 153–168.
Chen, J. (2012). GUniFrac: generalized UniFrac distances. R package

version, 1, 2012.

Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E.T.

(2019). The impact of mutualisms on species richness. Trends in

Ecology & Evolution, 34(8), 698–711.
Coelho, M.T.P. & Rangel, T.F. (2018). Neutral community dynamics and

the evolution of species interactions. Am. Nat., 191, 421–434.
Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L.,

Couloux, A. et al. (2012). An extreme case of plant–insect codiversification:
figs and fig-pollinating wasps. Syst. Biol., 61, 1029–1047.

de Andreazzi, C.S., Astegiano, J. & Guimarães, P.R. Jr (2019).
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