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Abstract.—Models of phenotypic evolution fit to phylogenetic comparative data are widely used to make inferences regarding
the tempo and mode of trait evolution. A wide range of models is already available for this type of analysis, and the field
is still under active development. One of the most needed development concerns models that better account for the effect
of within- and between-clade interspecific interactions on trait evolution, which can result from processes as diverse as
competition, predation, parasitism, or mutualism. Here, we begin by developing a very general comparative phylogenetic
framework for (multi)-trait evolution that can be applied to both ultrametric and nonultrametric trees. This framework not
only encapsulates many previous models of continuous univariate and multivariate phenotypic evolution, but also paves
the way for the consideration of a much broader series of models in which lineages coevolve, meaning that trait changes
in one lineage are influenced by the value of traits in other, interacting lineages. Next, we provide a standard way for
deriving the probabilistic distribution of traits at tip branches under our framework. We show that a multivariate normal
distribution remains the expected distribution for a broad class of models accounting for interspecific interactions. Our
derivations allow us to fit various models efficiently, and in particular greatly reduce the computation time needed to fit the
recently proposed phenotype matching model. Finally, we illustrate the utility of our framework by developing a toy model
for mutualistic coevolution. Our framework should foster a new era in the study of coevolution from comparative data.
[Character displacement; coevolution; comparative phylogenetics; interspecific interactions; linear stochastic differential
equations; trait evolution.]

Evolutionary biologists have long been interested in
the long-term evolution of phenotypic traits (Simpson
1944). Felsenstein (1973) introduced one of the first
models of phenotypic evolution, with the initial goal to
account for shared ancestry when testing for statistical
correlation between pairs of traits in extant species. In
this founding paper, Felsenstein proposed that a one-
dimensional quantitative trait evolving on a tree could
be modeled as a Brownian process that splits into two
independent Brownian processes at branching times.
This model mimics a trait that would evolve as a mere
effect of stochastic drift; it is now often used as a null
model, but also to estimate the relative lability (or rate of
evolution) of various traits in a given group of organisms
or of a given trait across different groups of organisms
(Thomas et al. 2006; Harmon et al. 2010).

Since these early developments, evolutionary
biologists have designed a series of models to better
understand the evolutionary processes that shape
phenotypic evolution [see Pennell and Harmon (2013)
for a review]. The Ornstein–Uhlenbeck (OU) process
has been proposed to model evolution under stabilizing
selection, that is, with a selective pressure pushing trait
values toward a given optimum (Hansen and Martins
1996; Hansen 1997; Butler and King 2004). The ACDC
model has been proposed to account for accelerating
(AC) or decelerating (DC) rates of phenotypic evolution
through time (Blomberg et al. 2003). The latter scenario,
where the evolutionary rate is high early in the history
of a clade and subsequently declines toward the present,

well known as the early burst (EB) model, has often
been used to test support for adaptive radiation theory
(Harmon et al. 2010; Moen and Morlon 2014). These
univariate models representing the evolution of a
single trait have been extended to multivariate models
representing the simultaneous evolution of multiple
traits, thus allowing to directly test hypotheses about the
coevolution between several phenotypic traits (Hansen
et al. 2008; Bartoszek et al. 2012; Jhwueng and Maroulas
2014). Other extensions have been developed to account
for variations in model parameters across clades (Butler
and King 2004; O’Meara et al. 2006; Revell and Collar
2009; Eastman et al. 2011; Beaulieu et al. 2012). Finally,
some of these models have been developed in the context
of phylogenies including fossil data (i.e., nonultrametric
trees, see Ruta et al. 2006; Slater 2015) in addition to
phylogenies with only extant taxa (i.e., ultrametric
trees). Most of these models have been implemented in
open-access packages (Butler and King 2004; Martins
2004; Harmon et al. 2008; Thomas and Freckleton 2012;
Clavel et al. 2015; Morlon et al. 2015), allowing their
application to a broad variety of questions and data sets
(see e.g., Labra et al. 2009; Mahler et al. 2010; Dale et al.
2015; Quintero et al. 2015; Slater 2015).

Despite these developments, most currently available
models ignore the effect of interspecific interactions
on trait evolution. Given the importance of species
interactions in classical evolutionary theories, such as
Simpson’s adaptive radiation (Simpson 1944), Ehrlich
and Raven’s escape and radiate (Ehrlich and Raven 1964)

551



552 SYSTEMATIC BIOLOGY VOL. 66

and Van Valen’s Red Queen (Van Valen 1973) theories,
building models that better account for such interactions
is fundamental. In a first attempt to take into account
the role of competition for niche space on character
evolution, a diversity-dependent (DD) model has been
introduced, where the rate of phenotypic evolution
declines as the number of lineages in the clade
increases (Mahler et al. 2010; Weir and Mursleen 2013).
While this model represents an important first step,
it still assumes that trait changes in one lineage are
independent from the value of traits in other, interacting
lineages, therefore ignoring the widespread idea of
trait- (or ecologically-) driven interspecific interactions.
More recently, the phenotype matching (PM) model
relaxed these hypotheses and more explicitly accounted
for interspecific interactions by modeling either the
attraction or the repulsion of traits from a clade-wise
average trait value. In the first case, referred to as
matching mutualism, species traits tend to converge to
similar values, whereas in the second case, referred to
as matching competition, species traits tend to diverge
(Nuismer and Harmon 2014; Drury et al. 2016).

The comparative phylogenetic approach developed
by Drury et al. (2016) allows fitting a version of the
model introduced by Nuismer and Harmon (2014)
where the evolution of trait values in one lineage
is influenced by the trait values of other lineages.
This approach is focused on the evolution of traits
within one clade. While within-clade interactions can
be particularly relevant for some types of interactions
(e.g., in the case of competitively driven character
displacement, Brown and Wilson 1956), the effect of
other types of antagonistic or mutualistic interactions on
trait evolution is often most relevant between distantly
related species. For example, host–parasite interactions
are thought to drive a coevolutionary race between
traits involved in host defence and parasite ability to
infect (e.g., the production rate of a toxic compound
v.s. the inhibitory concentration of parasite growth).
Similarly, prey–predator interactions may lead to the
coevolution of prey traits involved in camouflage,
repulsion, or escape strategies, together with predator
traits involved in the ability to detect and capture its
prey (e.g., escape speed vs. hunting speed) (Ehrlich
and Raven 1964; Dawkins and Krebs 1979). Mutualistic
plant–pollinator interactions also are thought to drive
the coevolution between plant traits involved in pollen
accessibility or flower attractiveness to their pollinator
(secondary metabolites, floral traits), and pollinator
traits involved in the ability to detect suitable plants and
to exploit plant rewards (Fenster et al. 2004; Weiblen
2004; Sletvold et al. 2016). While these types of biotic
interactions likely play a key role in trait evolution and
have been crucial in the development of coevolutionary
theories (Ehrlich and Raven 1964; Van Valen 1973), there
currently exists no framework for fitting models of
phenotypic evolution incorporating the effect of clade–
clade interactions.

The current article expands the work of Bartoszek et al.
(2012) who presented a unified framework for studying
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FIGURE 1. Phenotypic evolution in coevolving clades. We aim at
developing a framework for analyzing how traits evolve as a response
of potentially complex ecological interactions. a) The phylogenies
of plants (left) and pollinators (right), together with the present-
day interaction network (middle). b) The mean proboscis length of
pollinators and the mean floral tube length of pollinated flowers
coevolve as a result of mutualistic interactions.

coevolving traits in independently evolving lineages by
providing a unified framework for coevolving traits in
coevolving lineages. Throughout the article, the term
coevolution refers to the evolution of traits on fixed
phylogenies, that is, without any effect on the speciation–
extinction dynamics. In short, we aim to provide the
phylogenetic comparative tools allowing to study co-
evolutionary scenarios such as the one depicted on
Figure 1, where a plant trait and a pollinator trait
coevolve as a result of mutualistic interactions. We
focus on quantitative rather than discrete traits (Pagel
1994) and on gradual rather than punctuated evolution
(Bokma 2002; 2008; Landis et al. 2013; Bartoszek 2014).
Our framework, based on linear stochastic differential
equations (SDE), encompasses all models of continuous
(multi-)trait evolution mentioned above, and allows the
treatment of a broad set of coevolutionary models.
We show that the tip trait distribution under all
these models is Gaussian, and we highlight a general
procedure that allows one to compute its expectation
and covariance structure. We also provide analytical
developments that speed up the computation of the
likelihood in comparison with the general procedure.
This leads, for example, to a faster algorithm for the
likelihood computation of the PM model. The goal
of the article is two-fold: first, by providing general
solutions to the distribution of traits at tip branches
under our unified framework, we hope to help users
find their way in a dense and potentially overwhelming
literature; second, by showing how the framework can
be used to treat a broad class of within-clade and clade–
clade coevolutionary scenarios, we hope to foster the
development of models to test long-standing hypotheses
on the role of competition, predation, parasitism, and
mutualism in evolution.

We begin by presenting our framework and showing
how previous models as well as novel clade–clade
coevolutionary models fit within this framework; next,
we provide general solutions for the distribution of tip
trait values under this framework; then, we illustrate
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how the framework can be used to formalize and study
a toy model of clade–clade coevolution.

A GENERAL FRAMEWORK FOR PHENOTYPIC EVOLUTION

We introduce a general formalism to study
(multi-)trait (co)evolution when the interaction between
distinct phenotypic traits, distinct lineages within a
clade, and/or distinct lineages among several clades
potentially affects how phenotypic traits evolve.

Trait Evolution Through Time
We begin by considering the evolution of n traits

at a given time t; these can, for example, represent n
distinct traits evolving on a single lineage or a single trait
evolving in n lineages. We denote by Xt the column vector
of the n trait values at time t. Throughout the article we
assume that the evolution of the traits is driven by a linear
stochastic differential equation of the form:

{
dXt = (a(t)−AXt)dt+!(t)dWt
X0 = x0

(1)

where a is a vector of Rn whose coefficients can vary
with time, A is a constant square matrix of size Rn ×Rn,
! is a square matrix of the same size whose coefficients
can vary with time, and Wt is a n-Brownian motion (BM)
(i.e., a vector composed of n independent standard BMs).
Schematic examples are presented in Figure 2.

The formulation above implies that we consider
interaction effects that operate gradually in time rather
than as punctuated events. Intuitively, the deterministic
part (a(t)−AXt)dt reflects the direct effects of trait
values on the evolution of these traits, including
the effect of a trait value in one lineage on both

its own evolution (as in the OU process) and the
evolution of traits in the other lineages (as in the PM
process). The stochastic part !(t)dWt reflects drift and
the environmental noise influencing trait evolution.
It has been proposed that correlations within the
covariance matrix ! represent noncausal correlations,
for example, linked to joint evolutionary responses
to shared environmental conditions, while correlations
within the interaction matrix A represent causal effects
(Reitan et al. 2012; Liow et al. 2015). For simplicity, we
avoid the “causal/non-causal” dichotomy here; we stick
to the term “correlations” and consider only models
making the simplifying assumption that ! is diagonal.
The framework is, however, equally adapted to deal with
correlations incorporated through !.

Notation for Trees and Traits
We now consider a single or several clades, each

of them represented by a single, fixed, binary, time-
calibrated phylogenetic tree. Our framework could
easily be modified to treat nonbinary trees including
polytomies. Trees are not necessarily ultrametric,
meaning that they may include noncontemporary
tips (fossils). When considering multiple clades, all
associated trees share the same absolute time calibration.
Time t runs from the root of the oldest tree (t="0 =0)
to the most recent tip of all trees (t=T is the present if
at least one of the phylogenies includes extant species).
The K successive branching and extinction times when
considering the various trees altogether are denoted by
("1,"2,...,"K) and the time intervals between two such
events are called epochs, following Butler and King
(2004). We denote by nt the total number of lineages that
arose before (and at) time t.
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FIGURE 2. Schematic examples of trait evolution under various models covered by our framework. a) BM model b) BM model with drift c) OU
model. In (a), (b), and (c), traits evolve independently from one another. d) illustrates a new class of model that can be handled in our framework,
where a given trait value can influence the evolution of other traits: the two top traits evolve independently from the three bottom traits, but
within each of these independently evolving groups of traits, trait values are attracted to the mean of the interacting traits, as in the PM model.
The a vector and the A matrix corresponding to each model are represented, with trivial parameter values (e.g., the strength of attraction and
optimal value of the OU model are set to 1). The parameters in each row dictate the evolution of the trait to which the specific row is associated.
Each column represents the effect of the corresponding trait on each of the evolving traits. Under all these models, ! is the identity matrix.



554 SYSTEMATIC BIOLOGY VOL. 66

In the case of trait evolution within a single clade, we
assign numbers (from 1 to nt) to lineages by order of
origination. At each branching event ", one daughter
lineage inherits the number assigned to the ancestral
lineage while the other one is assigned n".

We model the evolution of d one-dimensional
quantitative traits. We denote by X(i,j)

t the value of
trait j (1≤ j≤d) on branch i at time t and Xt the
column vector containing the values of all traits on
all lineages at time t, ordered as follows : Xt =
tr(X(1,1)

t ,X(1,2)
t ,...X(1,d)

t ,X(2,1)
t ...,X(nt,d)

t ), where tr stands
for the transposition.

In the case of trait evolution in c distinct (co)evolving
clades, we begin by arbitrarily ordering the clades from
1 to c; then, we assign numbers to lineages following the
formalism introduced above, first numbering lineages
from clade 1, then clade 2, and so on. As above, we denote
by Xt the column vector containing the values of all traits
on all lineages at time t, which now is a concatenation of
the c column vectors corresponding to each clade.

Trait Evolution on Trees
Given one (or several) phylogenetic tree(s), a model

of phenotypic evolution is entirely defined by initial
conditions X0 on the trait values at the root(s) and a set of
rules dictating how the vector of traits Xt is updated (i) at
branching times, (ii) through each epoch (i.e., between
two branching or extinction times), and (iii) after a death
time.

In line with most models of phenotypic evolution, we
consider anagenetic character evolution, meaning that
traits do not change at cladogenesis. Hence, at a given
branching time ", each of the daughter lineages inherits
the trait value of their mother lineage. In practice, in
the case of evolution within a single clade, the new
vector X" is obtained by concatenating the d trait values
of the branching lineage at time " at the end of X"−
(where "− is the time just preceding the branching
event). In the case of evolution in several clades, the
new vector X" is obtained by inserting the d trait values

of the branching lineage at time " at the appropriate
location in X"− (i.e., at the end of the part of X"−
corresponding to the clade in which the branching event
is occuring).

On each given epoch ("i,"i+1) (i∈ {0,1,...,K−1}), we
assume that the evolution of the d traits on the n lineages
is driven by a linear stochastic differential equation of the
form introduced earlier in Equation (1) :

{
dXt = (ai(t)−AiXt)dt+!i(t)dWt

X("i) = X"i
(2)

where a, A, and ! are now indexed by i, the label of the
focal period. The content, as well as the size of a, A, and!
can hence vary with the period. Here, ai is a vector of Rnd

whose coefficients can vary with time, Ai is a constant
square matrix of size Rnd ×Rnd, !i is a square matrix of
the same size whose coefficients can vary with time, and
Wt is a nd-BM.

Finally, when a lineage goes extinct at a given time ",
its d trait values no longer evolve (i.e., they are frozen
at the extinction time), and they no longer have any
influence on the evolution of the traits of other lineages
until reaching the end of the process at time t=T. In
practice, this means that the vector X" is simply equal
to X"−, and that the d lines and columns in ai, Ai, and
!i corresponding to the now extinct lineage are all set to
zero.

We will show later that this general formulation
encapsulates many classical models of phenotypic
evolution, ensures analytical tractability, and further
allows the incorporation of a broad set of interspecific
coevolutionary scenarios.

Given the above, initial conditions on X0, and the
collection of (ai), (Ai), and (!i) associated to each epoch
fully define a process of trait evolution on one or several
trees. This formalism is illustrated in Figure 3 for a single
trait evolving on a single small tree.

All models written under the formalism that
we propose can easily be simulated numerically.
First, the whole trajectory of the process can be
simulated using a numerical scheme for SDE such
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FIGURE 3. Formalism used throughout the article to model the evolution of one trait on a nonultrametric tree. Epochs are separated with
vertical dashed lines.
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as the Euler–Maruyama scheme (Gardiner et al. 1985)
through each epoch, and augmenting the vector of
traits at branching times with traits corresponding
to the branching lineage (see Online Appendix D.1
available as Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.52636). Second, we
show in the next section how to compute numerically the
tip distribution. Tip values can then directly be drawn in
a fast way from the tip distribution.

Application: Existing and Novel Models of Trait Evolution
We first show that the general formulation above

encapsulates many classical models of phenotypic
evolution, before showing how it further allows
considering a much broader set of models, including
models of within- and between-clades coevolution.

Models of phenotypic evolution have traditionally
been characterized by a stochastic differential equation
specifying how a given trait evolves along a single
lineage. Applying Equation (2) to trait k on epoch i yields:

dX(k)
t =

⎛

⎝a(k)
i (t)−

ntd∑

l=1

A(k,l)
i X(l)

t

⎞

⎠dt+
ntd∑

l=1

!
(k,l)
i (t)dW(l)

t (3)

where the two sums are taken over all traits and
all lineages. The term

∑ntd
l=1A(k,l)

i X(l)
t is the term that

specifies how the value of trait k and all other traits
in all other lineages influence the evolution of trait k.
Given a well-known differential equation specifying
how a given trait evolves along a single lineage for
a previously proposed model of phenotypic evolution
(second column in Table 1), deriving the corresponding
expressions for a, A, and ! using Equation (3) is
straightforward. Table 1 summarizes these expressions

for existing univariate models running on ultrametric
trees.

The first three models (BM, ACDC, and DD) are
models in which trait evolution along a lineage is
influenced neither by the trait value of this lineage nor
the trait value of any other lineage. The corresponding
A matrices are null matrices, as would be the case for
any model with the latter property. The fourth model
(OU) is a model in which trait evolution along a lineage
is influenced by its own trait value, but not the trait
values of other lineages. The corresponding A matrix
is diagonal, as would be the case for any model with this
property. Finally, the last model (PM) is a model in which
trait evolution along a lineage is influenced by its own
trait value and the trait values of other lineages, such that
A has nonnegative off-diagonal values. A remarkable
property of A under this model is that all its off-diagonal
values are identical. This is explained by the fact that the
PM model is a neutral model, in the sense that the effect
A(k,l) of lineage l on lineage k is the same for all lineages
k ̸= l. All other models in which the off-diagonal elements
of A are identical would have this same property, known
in probability theory as exchangeability.

Several variations around these models can still be
embedded in our general framework: (i) Models in which
the rate of phenotypic evolution depends on a variable
Y(t) that itself varies through time (see e.g., global
temperature T(t) in Clavel J., Morlon H., unpublished
data) can be formalized similarly to ACDC, with time
t replaced by Y(t). (ii) Models accounting for the
biogeographic background in which species coevolved
(e.g., all the “+GEO” models in Drury et al. 2016) can
be incorporated in our framework through the design
of the A matrix when ancestral geographic ranges are
known or reconstructed (see details in Online Appendix
C.3, available on Dryad). (iii) Considering subclades in

TABLE 1. Examples of classical models of trait evolution fitting our framework

Key Model name
Evolution along lineage k a A !

BM Brownian motion, random genetic drift
dX(k)

t =#dW(k)
t 0 0 #I

ACDC Accelerating or decelerating rate, early burst
dX(k)

t =#0ertdW(k)
t 0 0 #0ertI

DD Diversity-dependent
dX(k)

t =#0ernt dW(k)
t 0 0 #0ernt I

OU Ornstein–Uhlenbeck, stabilizing selection
dX(k)

t =$(%−X(k)
t )dt+#dW(k)

t $%V $I #I
PM Phenotype matching

dX(k)
t =$(%−X(k)

t )dt +S
(

1
nt

∑nt
l=1 X(l)

t −X(k)
t

)
dt+#dW(k)

t $%V ($+S)I− S
nt

U #I

Notes: The unity vector (vector full of 1) is denoted by V, I refers to the identity matrix (diagonal matrix with diagonal
values equal to 1), and U refers to the unity matrix (matrix full of 1). Their size is the same as the size of the vector of
traits Xt considered. Parameters are #: rate of neutral phenotypic evolution;$: strength of stabilizing selection; %: optimal
phenotype; S: strength of between-lineage competition driving individual phenotypes away from clade-wise average
phenotype; #0 : rate of phenotypic evolution at the root of the tree; r : parameter controling the exponential rise or decay
of the rate of phenotypic evolution with time (ACDC) or with the number of lineages (DD). Considering nonultrametric
trees including fossils amounts to replacing vector V and matrices I and U by their homologs Valive, Ialive and Ualive,
where the subscript specifies that the vector and matrices have 0 on lines and columns corresponding to lineages that
are extinct in the given epoch.

http://dx.doi.org/10.5061/dryad.52636
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which trait evolution follows distinct models or similar
models with distinct parameter values (as in Butler
and King 2004) is also straightforward. One just needs
to specify distinct parameters in a, A, and ! on the
lines and columns corresponding to lineages in the
distinctive subclade. (iv) Multivariate trait evolution
models, in which several distinct traits evolve in a
correlated manner (Hansen et al. 2008; Bartoszek et al.
2012) are easily written in our framework, as shown with
some examples in Online Appendix B.2, available on
Dryad. In multivariate models with lineages evolving
independently from one another (e.g., multivariate
combinations of BM, ACDC, DD, and OU models),
A, and ! are block diagonal matrices, with blocks
of size the number of traits, each of them describing
correlated multivariate evolution along a particular
lineage. In this case, trait–trait correlations introduced
through the A matrix correspond, as in Bartoszek et al.
(2012), to the case when a given trait on a lineage is
attracted to (or repulsed from) a linear combination
of other traits in this lineage. (v) Finally, accounting
for observation errors when available only requires to
adjust the variance–covariance matrix as described in
Hansen and Bartoszek (2012).

By considering previous models under this light, it
becomes very clear that the set of models that have
been considered so far represents a very small fraction
of all the models that could potentially be considered.
In particular, the A matrix, which dictates how the
value of a given trait influences the evolution of other
traits—either different traits in the same lineage, or the
same trait in other lineages, or yet different traits in
other lineages—has so far been very constrained. It has
been considered to be zero (BM, ACDC, DD), diagonal
(OU), block diagonal (multivariate), and only recently
with nonzero off-diagonal values (PM). Relaxing these
constraints means that a much broader array of models
incorporating the effect of interspecific interactions on
phenotypic evolution can be considered. In particular,
lineages do not need to be interchangeable. Evolution
in complex networks of interactions can be considered
by designing a priori the A matrix according to the
known network. The effect of clade–clade interactions
can be modeled by filling the A matrix with nonzero
entries A(k,l) with k and l corresponding to lineages
from different clades. For example, under a scenario
of two clades coevolving with no effect of within-
clade interactions, this leads to a A matrix with two
off-diagonal blocks.

We can thus imagine a variety of coevolutionary
scenarios, the only major constraint being that the
effect of a trait value on the evolution of other traits
is assumed to be linear [Equations (2) and (3)]. Given
a scenario, we can write the corresponding evolution
of each trait on a given lineage through each epoch
[Equation (3)], and deduce the collection of (ai), (Ai),
and (!i) defining the evolutionary process [Equation
(2)]. Below, we first show how to derive the probabilistic
distribution of traits at tip branches for any model that

can be written under this framework before illustrating
the approach with a particular model of clade–clade
interaction.

DISTRIBUTION OF TIP TRAIT VALUES

The Distribution of Traits is Gaussian
Deriving the probabilistic distribution of traits at tip

branches is key to our ability to fit phenotypic models
to comparative data using maximum likelihood or
Bayesian approaches. It also provides a very efficient way
to simulate tip values for specific models, by drawing
from the expected tip distribution.

When X0 has a Gaussian distribution (including
the particular case when X0 is constant) the linear
equations considered in the framework ensure that Xt
remains a Gaussian vector at each time t (see details in
Appendix section “The Distribution is Gaussian”). The
trait vector Xt, of size ntd, is thus uniquely defined by its
expectation vector mt and covariance matrix&t, and has
the following density:

∀x∈Rntd, f (x)= 1
√

(2')ntd det(&t)
e− 1

2
tr(x−mt)&−1

t (x−mt)

In particular, the distribution of tip trait values at
present time T is Gaussian with expectation vector mT
and covariance matrix &T . We can compute mT and &T
iteratively: starting with initial conditions m0 and&0 for
X"0 =X0, we compute, until reaching the present:

1. m"−i+1
and &"−i+1

at the end of each epoch i

2. m"i+1 and &"i+1 at the branching time "i+1

Evolution of the Distribution Through Each Epoch
Knowing the expectation vector and covariance matrix

(m"i ,&"i ) at the beginning of epoch i, we show (see
Appendix section “Evolution through time with close
formula”) that m"−i+1

and &"−i+1
at the end of epoch i are

given by the following analytical expressions:

m"−i+1
=e("i−"i+1)Ai m"i +

∫ "i+1

"i

e(s−"i+1)Ai ai(s)ds (4a)

&"−i+1
=
(

e("i−"i+1)Ai
)
&"i

tr
(

e("i−"i+1)Ai
)

+
∫ "i+1

"i

(
e(s−"i+1)Ai!i(s)

)
tr
(

e(s−"i+1)Ai!i(s)
)

ds

(4b)

Alternatively, we can write the evolution of m and &
on epoch i as a set of ordinary differential equations
(ODEs), and integrate these ODEs numerically, with
initial conditions given by (m"i and &"i ). On each epoch
i, each component k of the expectation vector evolves
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FIGURE 4. Update step for the expectation vector and covariance matrix at branching times when there is one (top row) or two (bottom
row) clades. The middle panel highlights the branching lineage j, as well as the ordering of lineages before and after the branching event. The
vector m"i+1 and matrix&"i+1 (displayed on the right) are constructed by augmenting m"−i+1

and&"−i+1
(displayed on the left) with copies of blocks

corresponding to lineage j (materialized by numbers).

according to Equation (5a) and each component (k,l) of
the covariance matrix evolves according to Equation (5b)
(see derivation in Appendix section “Evolution through
time with ODE system”):

d
dt

m(k)
t =a(k)

i (t)−
ntd∑

m=1
A(k,m)

i m(m)
t (5a)

d
dt
&

(k,l)
t =−

ntd∑

m=1
A(k,m)

i &
(m,l)
t +A(l,m)

i &
(m,k)
t

−!(l,m)
i (t)!(k,m)

i (t) (5b)

Equations (4a, 4b) and the ODE system described
by Equations (5a, 5b) are mathematically equivalent.
The first formulation is more computationally efficient
when the integrals can be simplified analytically. For
example, when A is symmetric Equations (4a, 4b)
can be simplified (Appendix section “For models
considering a constant, A symmetric, and !=#I”)
and computed very efficiently. This first formulation
also reveals that if &"i is positive definite, then
&"−i+1

remains positive definite (and thus invertible)
even when !i is not. Inverting & is important for
computation of the Gaussian distribution. The second
formulation provides a more intuitive interpretation
of the components that influence the evolution of
trait distribution, and is easily implementable for any
model.

Evolution of the Distribution at Branching Times
Knowing the expectation vector and covariance matrix

(m"−i+1
,&"−i+1

) at the end of epoch i, which precedes the
branching of a given lineage j, we build m"i+1 and &"i+1
at the branching event, as illustrated in Figure 4.

Recall that in the case of evolution within a single
clade, X"i+1 is obtained by concatenating the d trait values
of lineage j at time "−i+1 at the end of X"−i+1

. The d new
components in X"i+1 are thus the exact copies of the
trait values of lineage j, and have the same expectation
and covariance matrix. Hence, the expectation vector
m"i+1 is simply obtained by concatenating m"−i+1

with
the d components of m"−i+1

corresponding to lineage j.
The covariance matrix &"i+1 is obtained as follows:
the covariance matrix corresponding to the previously
existing lineages is unchanged, given by &"−i+1

; to this
main block, we add below a copy of the d lines
corresponding to the covariances between the d traits in
lineage j and all the other traits, and we add to the right
the same components arranged in d columns; finally, we
fill the last missing block in the bottom right corner of
&"i+1 with the block corresponding to the covariance
matrix among the d traits in lineage j (i.e., the d×d
diagonal block of &"−i+1

starting from line (j−1)d+1).
In the case of evolution in multiple clades, m"i+1 and

&"i+1 are constructed following a similar procedure,
by augmenting m"−i+1

and &"−i+1
with copies of blocks

corresponding to lineage j, inserted at the appropriate
location. We illustrate this update step in Figure 4.
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FIGURE 5. Time (in seconds) needed to compute the distribution of tip data following the PM model with parameters (m0,v0,%,$,S,#)=
(0,0,1,0.1,1,2). Trees are simulated under a pure-birth model conditioned on having a given number of leaves. Bottom dots : ‘analytical’
implementation; Top dots: ‘ode’ implementation. The top dashed curve represents the slope of time increase as a power 4 of the number of leaves
while the bottom dashed curve represents the slope of time increase as a power 3 of the number of leaves.

Tip Trait Distribution for Particular Models
Applying this general iterative procedure along

a phylogenetic tree provides closed analytic tip
distribution formulae for a wide variety of models.
In Appendix section “Deriving the analytical tip
distribution for known models”, we re-derive known
tip distributions for models without lineage–lineage
interaction, thus providing a unified review of
mathematical results associated to these models. Tip
distributions for classical univariate models (BM, ACDC,
DD, OU) on ultrametric and non-ultrametric trees are
summarized in Appendix Table A1. We confirm, as has
been shown before (Uyeda et al. 2015), that the OU and
AC models have identical tip distributions on ultrametric
trees. We also re-derive results that can be found in
Bartoszek et al. (2012) providing tip distributions for
multivariate models.

Analytical formulae of tip distributions for models
with lineage–lineage interactions have not yet been
proposed. Drury et al. (2016) developed the inference
tools that allow fitting the PM model, using the ODE
system given in Equations (5a, 5b) (thereafter referred
to as “ode” method). Here, we develop the inference
tools based on analytical reduction of Equations (4a,
4b), (thereafter referred to as “analytical” method, see
Appendix section “For the PM model”), and compare
the efficiencies of the two methods. Specifically, we
simulated 50 pure-birth Yule trees with a per-lineage
speciation rate of 1 per time unit, conditioned to
having a given number of tips at present, using the
“phytools” R package (Revell 2012). We then computed
the tip distribution corresponding to the PM model with

parameters fixed at (m0,v0,%,$,S,#)= (0,0,1,0.1,1,2)
using both the analytical and the ode methods. The
new analytical method is much more efficient than the
previous ode method (Fig. 5). While we were previously
limited to fitting the PM model to trees of less than 150
tips due to memory issues, the analytical method allows
fitting trees with up to 600 tips on a desktop computer.

Drury et al. (2016) also proposed an extension of the
PM model accounting for the biogeographic history of
lineages. In the case when each lineage is present in
at most one location, the “analytical” method can be
extended, providing fast likelihood computation (see
Online Appendix C.3 available on Dryad). When there
are lineages occurring in more than one location at the
same time, we need to resolve numerically the ODE
system in order to compute the likelihood of tip traits.
While this is more time consuming than finding a good
“analytical” reduction, the new implementation is more
efficient than the one we previously proposed (Drury
et al. 2016).

MODELING TRAIT EVOLUTION ON COEVOLVING CLADES

We illustrate how our framework can be used to study
trait coevolution in scenarios of clade–clade interactions.
We consider a simple model with two interacting clades
(numbered 1 and 2), in which a given trait in clade 1
coevolves with another given trait in clade 2. Following
the approach introduced above, we define Xt the vector
of trait values containing first the trait values for clade 1,
and then the trait values for clade 2, and we write a
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FIGURE 6. Hypothetical clade–clade coevolutionary scenario. Vertical dashed lines delimitate the successive epochs. The vector Xt contains
the trait values on the third (last) epoch, P3 is the matrix of network interactions, and a3, A3 and !3 together define trait evolution according to
the clade–clade matching model defined in Equations (6) and (7).

stochastic differential equation specifying how each trait
value evolves along a single lineage k. In the spirit of the
PM model (Nuismer and Harmon 2014), we propose here
a formulation in which the trait of lineage k is attracted
to (or repelled from, depending on the sign of S) the
average trait value of the lineages it interacts with, plus
(or minus) a shift:

dX(k)
t =S

⎛

⎝(kd1 +(1−(k)d2 + 1
nk

n∑

l=1

pk,lX
(l)
t −X(k)

t

⎞

⎠dt

+#dW(k)
t (6)

where S represents the attracting or repelling strength of
species interactions on trait evolution, d1 represents the
shift for lineages from clade 1, d2 the shift for lineages
from clade 2, # is the drift parameter, (k equals one if
lineage k belongs to clade 1 and zero if it belongs to
clade 2, pk,l equals one if lineages k and l interact and
zero otherwise, nk =∑lpk,l is the number of lineages
interacting with lineage k, and n is the total number of
lineages.

When S is positive, the trait value of lineage k is
attracted to an optimal trait value given by the average
trait value of the interacting species (plus a shift d1 or d2).

An example of such a scenario of clade–clade
matching mutualism is the coevolution between the
length of floral tubes and the length of butterfly
proboscis in a plant–pollinator mutualistic network
(illustrated in Fig. 6). In this example, we assume that
the optimal length of a butterfly proboscis is the average
length of the plant floral tubes it pollinates plus a shift
d2, while the optimal length of a plant floral tube is
the average proboscis length of its butterfly pollinators
plus a shift d1. With d1 +d2 =0, both traits can reach
their optimal state, leading to a stable situation with
butterfly proboscis a bit longer (if d1 >0) or shorter (if
d1 <0) than plant floral tubes. With d1 +d2 ̸=0, traits

cannot reach their optimal state, resulting in a runaway
process where both traits tend to evolve toward an ever-
moving optimum. For example, with positive d1 and d2,
the butterflies proboscis tends to get longer to better
access the nectar, while the floral tube also tends to
get longer to force the butterfly’s body to touch the
stamen. The parameters S and # control respectively the
strength of the interaction effect and the rate of stochastic
phenotypic change. The bigger S, the closer the traits
will track the optimum; the bigger #, the bigger the
fluctuations around this optimum.

When S is negative, the traits are repelled from the
average trait value of the interacting species (plus a
shift d1 or d2). This may capture natural situations
of clade–clade competition driving trait displacement.
Finally, some antagonistic interactions between traits
could require to introduce two parameters S1 >0 and
S2 <0 to capture match-versus-escape scenarios. For
example, parasites might tend to develop cues matching
those of their hosts whereas hosts develop cues to escape
their parasites in a coevolutionary arms race.

From Equation (6) we deduce the corresponding a, A
and ! through each epoch:

a=S()d1 +(V−))d2)

Ak,l =S
(

1k=l −
pk,l
nk

)
(7)

!=#I

where ) is the vector of elements (k (see Fig. 6 for
an illustration). Matrix A is in general not symmetric
anymore, as all species k do not have the same number
nk of species that they interact with.

As shown by Equation (7), entirely defining a model of
clade–clade coevolution requires introducing a constant
network of interaction during each epoch (the P matrix
with elements pk,l). We can potentially re-define epochs
to account for events of change in the interaction
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b) c)

d) e)

a)

FIGURE 7. Trait evolution under the Generalist Matching Mutualism (GMM) model. a) an illustrative generalist network of interactions
between two clades. Vertical dashed lines delimitate the successive epochs. b) c) d) e) Expected tip distribution for the average trait value in each
clade, with parameter values (S,d1,d2,#)= b) (2,−1,1,1), c) (2,0,2,1). d) (2,−1,1,1.5), e) (0.2,−1,1,1).

network in addition to speciation and extinction events,
thus allowing interaction networks to evolve along
branches. In practice, we typically (at best) have access
to the current interaction network (Fig. 6), but not the
ancestral networks. A solution to this would consist
in treating the ancestral P matrices as parameters of
the model, and searching the ancestral network(s) that
maximize the fit to the data. Another approach would
consist in reconstructing ancestral networks over each
period according to rules regarding the inheritance
of interactions at speciation times. Developing these
approaches is outside the scope of the current study, but
we have shown how to compute tip trait distributions
once they are developed.

We illustrate the computation of tip trait distributions
for a model in which the ancestral networks are known:
a generalist model where all species from clade 1
interact with all species from clade 2. We consider
a ‘Generalist Matching Mutualism’ model of trait
evolution (thereafter referred to as GMM, and illustrated
in Fig. 7a), which is captured by Equation (6) with S
positive and pk,l =1 for any two lineages k and l from
different clades and pk,l =0 for any two lineages k and l
from the same clade. Given that the model fits within our
framework, we know that the trait distribution at the tips
is Gaussian, and we can compute the expectation vector
and covariance matrix corresponding to the model using

Equations (4a, 4b), which we can reduce for this specific
model in order to speed up the computation (Appendix
“For the GMM model”).

The tip distribution is relatively fast to compute (e.g.,
in the order of 0.8 seconds with two 100-tip trees on
a desktop computer), such that fitting the model by
maximum likelihood or in a Bayesian framework should
not be problematic for trees with a few hundred tips.
However, we do not aim here to carry an in-depth study
of this particular model, nor to fit it to empirical data.
Rather, we use our ability to rapidly compute tip trait
distribution to get a first glimpse of the model behavior
under distinct sets of parameter values.

In Figure 7 (b,c,d,e), we plotted the distribution of the
average X̄1 of trait values in clade 1 and the average X̄2 of
trait values in clade 2 for traits evolving under the GMM
model with four parameter sets chosen to lead to four
distinct qualitative behaviours. From Equation (6), we
can easily show that under GMM X̄1 +X̄2 is a drifted
BM with drift term S(d1 +d2) and X̄1 −X̄2 is an OU
process with optimum (d1 −d2)/2 and selection strength
S. The shift parameters d1 and d2 thus directly determine
the position of the optimum of the distribution. An
“equilibrium” scenario corresponds to d1 =−d2 : the
more likely values for the two average traits X̄1 and
X̄2 are such that X̄1 = X̄2 +d1 (see Fig. 7b). In contrast,
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when d1 ̸=−d2, the two communities have optimal trait
values that are noncompatible, and the traits will tend
to increase if d1 +d2 >0 and decrease if d1 +d2 <0 (see
Fig. 7c) in a “runaway”process. In this case, the position
of the peak in the tip distribution will also depend on
the depth of the root, the trait values at the root, and
the value of the parameter S. The parameter S plays an
important role in the hump thickness: the bigger S, the
more constrained X̄1 −X̄2 around (d1 −d2)/2 (see Fig. 7e).
The parameter # also plays a role in the thickness of
the hump, but in the orthogonal direction : increasing
# flattens the distribution by allowing different X̄1 and
X̄2 values while retaining the constraint on X̄1 −X̄2 (see
Fig. 7d). In future work, it would be interesting to assess
whether these results can be used to build a statistical test
for distinguishing between the runaway and equilibrium
scenarios.

Implementation
Our framework is implemented in the R package

“RPANDA” (Morlon et al. 2015), including functions to
compute tip distributions, to simulate trait evolutionary
trajectories using the Euler–Maruyama scheme (see
Online Appendix D.1 available on Dryad), and to
simulate tip data by drawing from the expected
tip distribution. We also implemented optimization
functions to infer model parameters by maximum
likelihood, and to compare the fit of distinct models
using information criteria. In the most general user-
defined use of our framework, the input is one or
several potentially nonultrametric phylogenetic tree(s)
and the collection of (ai,Ai,!i) matrices during each
epoch that define a specific model. In this case, the tip
distribution is computed using the most general “ode”
method that solves numerically the ODEs. In addition,
we implemented all models mentioned in Table 1 as
well as GMM with the fastest described algorithm to
compute their tip distribution. In Online Appendix E
available on Dryad, we provide a tutorial explaining
the structure of our code and illustrating how to use it.
We however recommend potential users to thoroughly
test the statistical properties of the models they design
(parameter estimation, type I and II error rates) using
simulations before applying them to empirical data.
These properties are model dependent and thus should
be assessed case by case. We are in the process of
performing these tests for the GMM model.

DISCUSSION

We developed a modeling framework for traits
coevolving in coevolving lineages and clades. We
highlighted that under a wide variety of models where
the evolution of a given trait on a given lineage is
linearly related to its own value and the value of other
traits on the same lineage, of the same trait on other
lineages, and/or of other traits on other lineages, the

expected tip trait distribution is Gaussian. We showed
how to compute this tip distribution in general, as well
as for specific models, including classical models of
phenotypic evolution and new models of clade–clade
coevolution.

Many classical models of phenotypic evolution, such
as univariate and multivariate BM, OU, ACDC, and
DD fit within our framework. They correspond to
the situation where the evolution of traits on a given
lineage is independent of trait values on other lineages.
For these models, we already know that the tip
trait distribution is Gaussian. However, finding the
relevant computation of the expectation vectors and
covariance matrices associated with each model in the
dense literature of comparative phylogenetics can be
overwhelming for neophytes. Our Appendix section
“Deriving the analytical tip distribution for known
models” unifies these computations under a common
formalism, providing both the expressions for the
various existing models and their mathematical
underpinning. This is done in the context of trees that
are not necessarily ultrametric, meaning that all models
can be applied to phylogenies including fossils. We hope
that this Appendix can serve as a useful review for
navigating phylogenetic approaches for understanding
trait evolution.

The fact that the distribution of traits remains
Gaussian when traits from different lineages coevolve is
a convenient result, because it means that computing the
tip distribution only requires computing the expectation
vector and covariance matrix associated with the
different models. For example, we used this result in
Drury et al. (2016) to compute tip trait distributions
for the PM model (Nuismer and Harmon 2014) and fit
it to comparative data by maximum likelihood. Here
we vastly extend the set of potential coevolutionary
models for which tip trait distributions can be computed
and provide two general approaches for computing
the expectation vector and covariance matrix. One of
these two approaches (the “ode” approach) consists
in numerically integrating a set of ODEs. This is the
approach that was used in Drury et al. (2016). The
other approach (the “analytical” approach) involves
computing integrals and is more efficient when these
integrals can be analytically reduced, which depends
on the form of the model. Applying the “analytical”
approach to the PM model, we greatly improved its
computational efficiency.

We provide a framework for computing tip trait
distributions for a wide class of models accounting for
within-clade and clade–clade interactions. We hope that
this flexibility will foster the development and study of
various models adapted to the specificities of particular
scientific questions and biological systems. We did not
study at length a particular coevolutionary model in
this article, but the PM model was thoroughly studied
elsewhere (Drury et al. 2016). The GMM model that we
introduce here can be seen as a clade-clade analogue to
the PM model (Nuismer and Harmon 2014). Both models
are “generalist” in the sense that all lineages are assumed
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to interact (within-clade in the case of PM and between
clades in the case of GMM). This assumption can be
relaxed by incorporating additional information. In our
biogeographic models, for example, lineages can only
interact if they are sympatric (Drury et al. 2016). More
generally, any information or hypothesis concerning
the network of interactions between lineages can be
accounted for into the A matrices.

There are two main limitations to the modeling
framework presented here. The first one is that trait
evolution is always assumed to respond linearly to trait
values in other lineages. Thus, nonlinear effects such
as a stronger selection for divergence when phenotypes
are similar cannot be accounted for. Nuismer and
Harmon (2014) originally developed an individual-
based model accounting for such nonlinear effects,
and then linearized the effects to derive the model
of phenotypic evolution emerging at the lineage level
(their equation S38). This linear expression inspired the
development of the present framework, and assures
that the tip trait distribution is Gaussian. It would
however be particularly interesting to model nonlinear
effects. The second limitation is the issue of model and
parameter identifiability, in particular in the absence of
fossils. A Gaussian distribution in Rnd can potentially
allow identifying several models and parameters, but
there are distinct combinations for which a similar (or
even identical) distribution is expected. For example, we
already know that parameters of the OU model are non
identifiable on phylogenies with only extant species (Ho
and Ané 2014) and that OU and AC have identical tip
distributions on ultrametric trees (Uyeda et al. 2015).
Thus, while we wrote our framework in all generality,
with a, A, and ! encompassing as many parameters as
desired, and parameters that potentially vary between
epochs, it is clear that simplifying assumptions need
to be made in order to reduce this parameter space.
Identifiability cannot always be checked analytically, as
in the case of the OU and AC models. In addition,
there can be differences between theoretical and de facto
identifiability, with models that are identifiable in theory
but are difficult to identify in practice. For example, we
can show analytically that $ and S from the PM model
are theoretically identifiable, but in practice in most cases
only $+S can be estimated with precision. Also, de facto
identifiability depends on the data available, such as the
size and shape of a particular phylogeny, and whether it
includes fossils or not (Slater et al. 2012). Furthermore,
models taking into account interactions among lineages
will have to assess the influence of extinct lineages in
the past. This has been studied in Drury et al. (2016) for
the PM model, by simulating trait evolution on trees
including dead branches, before fitting the model on
the reconstructed tree only. Our recommendation is to
check identifiability on a case-by-case basis, by fitting
the set of models under consideration to trait data sets
simulated directly on the specific empirical phylogenies
in hands. We provide the tools for rapidly simulating
tip values under various models by sampling expected
distributions.

One of the most challenging and exciting
developments that we see ahead is to move from
generalist models to models that account for specific
interaction networks. We show in this article how
to compute tip trait distributions for such models,
assuming that the ancestral networks are known. While
some fossil species interaction networks have been
compiled (Dunne et al. 2008), such data is typically not
available. Thus, if we are to really understand if and
how species interactions affected long-term phenotypic
evolution, we need to start developing models for
reconstructing ancestral networks, analogous to the
use of ancestral biogeographic models [see Ronquist
and Sanmartín (2011) for a review] to incorporate
biogeography into models of phenotypic evolution
(see e.g., DD+GEO or MC+GEO, in Drury et al. 2016).
Interestingly, our modeling framework could provide an
approach to do so, informed by species phylogenies, the
interaction network of present day species, and current
species phenotypes. Indeed, rather than assuming that
the ancestral networks are known, we could treat them
as additional parameters to optimize upon, and find
the ancestral networks that maximize the likelihood
of the current data. These approaches have not been
experimented yet and are not part of the available
code in RPANDA. Whether there will be enough
information in the data to distinguish the proba-
bility of alternative ancestral networks remains to
be tested, but the observed phylogenetic signal in
empirical networks of interactions is encouraging (Ives
and Godfray 2006; Rafferty and Ives 2013; Hadfield
et al. 2014; Hayward and Horton 2014; Martín González
et al. 2015). Our ability to distinguish the probability
of alternative ancestral networks will be increased by
proposing various scenarios regarding the inheritance
of interactions at speciation times, such as scenarios in
which daughter species interact with many or few of
the species that interacted with their mother lineage.
These upcoming developments can draw upon the
existing literature on the cophylogeny problem (Conow
et al. 2010), and will certainly have an important role
to play in the ongoing effort of understanding the
evolution of species interaction networks (Loeuille
and Loreau 2005; Martinez 2006; Nuismer et al.
2013).

Our framework for modeling continuous trait
evolution on phylogenetic trees includes most
previously proposed models and can be used to
develop a series of new models of within-clade
and clade–clade coevolution. We hope that this will
motivate new theoretical and empirical applications
aimed at unravelling how species interactions evolve and
influence phenotypic evolution over macro-evolutionary
timescales.
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APPENDIX

Evolution of the Distribution Through Each Epoch
The distribution is Gaussian.—Recall that a vector is
Gaussian if all linear combinations of its components
follow a normal distribution. We will thus show by
induction that all linear combinations of the traits follow
a normal distribution.

The process of trait evolution starts either at the
stem root with a vector of size d defined by the initial
conditions X"0 = tr(X1

0,...Xd
0), or at the crown root with

a vector of size 2d defined by the initial conditions :
X"0 = tr(X1

0,...Xd
0 ,X1

0 ...,Xd
0), or at any other step, provided

the initial conditions are Gaussian by assumption.
Now, assume that X"i is a Gaussian vector.
Then, ∀t∈ ("i,"i+1), after integration we have the

following closed expression for the value of the process
Xt.

Xt =e−tAi

(

e"iAi X"i +
∫ t

"i

esAi ai(s)ds+
∫ t

"i

esAi!i(s)dWs

)

(A1)

Moreover, we have, for any deterministic function *
(Gardiner et al. 1985),

∫ t

tn

*sdWs ∼N
(

0,

∫ t

tn

*s
tr*sds

)

Hence, Xt is a linear combination of Gaussian vectors,
which makes it a Gaussian vector.

Last, suppose that at time "i+1, the jth branch splits,
in which case the vector grows. All linear combinations
of the components of Xt at time "−i+1 have a normal
distribution. And the d additional components added
at time "i+1 belong to the components at time "−i+1. It

follows that all linear combinations of the new vector
still have a normal distribution.

Evolution through time with close formula.—Still assuming
that we know the (Gaussian) distribution of X"i at the
beginning of an epoch ("i,"i+1), a few more lines allow
us to provide a closed formula for the distribution of Xt
at all time t∈ ("i,"i+1). Indeed, using Equation (A1), and
the fact that, if X and Y are two independent Gaussian
vectors with expectation vectors respectively mX and
mY and covariance matrices respectively &X and &Y ,
then:

DX+d∼N
(

DmX +d , D&X
trD
)

X+Y ∼N
(
mX +mY , &X +&Y

)

It thus follows that, ∀t∈ ["i,"i+1],

mt =e("i−t)Ai m"i +
∫ t

"i

e(s−t)Ai ai(s)ds (4a)

&t =
(

e("i−t)Ai
)
&"i

tr
(

e("i−t)Ai
)

+
∫ t

"i

(
e(s−t)Ai!i(s)

)
tr
(

e(s−t)Ai!i(s)
)

ds (4b)

Applying these equations for t="i+1 thus gives the
distribution of the trait vector at time "i+1 , which
is the result stated in Equations (4a, 4b) in the main
text.

Remark that, unless one of the very first branches
immediately dies at the beginning of the process at a
fixed initial condition, the density of the tip distribution
has support in Rnd. One can check that &t stays positive
definite (implying that det&t ̸=0), even when some !i
are not positive definite (except the first one).

Evolution through time with ODE system.—The
expectation and covariance formulae provided in
Equations (4a, 4b) require to deal with an integral
which is not always straightforward to compute.
Alternatively, one can prefer to take the derivative
of this expression, get a set of ODEs verified by the
expectation and covariance elements through each
epoch, and subsequently integrate the ODE system. We
show now another way to derive this set of ODEs.

First, we write the stochastic differential equation on
any epoch ("i,"i+1) and for each trait k, which is given in
the most general setting by :

dX(k)
t =

⎛

⎝a(k)
i (t)−

ntd∑

m=1
A(k,m)

i X(m)
t

⎞

⎠dt+
ntd∑

m=1
!

(k,m)
i (t)dW(m)

t

http://dx.doi.org/10.5061/dryad.52636
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Itô’s formula (Gardiner et al. 1985) then gives us:

d
(

X(k)
t X(l)

t

)
=X(k)

t dX(l)
t +X(l)

t dX(k)
t +d<X(k)

t ,X(l)
t >

=

⎛

⎝a(l)
i (t)X(k)

t −
ntd∑

m=1
A(l,m)

i X(m)
t X(k)

t

⎞

⎠dt

+
ntd∑

m=1
!

(l,m)
i (t)X(k)

t dW(m)
t

+

⎛

⎝a(k)
i (t)X(l)

t −
ntd∑

m=1
A(k,m)

i X(m)
t X(l)

t

⎞

⎠dt

+
ntd∑

m=1
!

(k,m)
i (t)X(l)

t dW(m)
t

+
ntd∑

m=1
!

(l,m)
i (t)!(k,m)

i (t)dt

Taking the expectation, it follows that

d
dt

E
(

X(k)
t X(l)

t

)
=a(l)(t)E

(
X(k)

t

)
+a(k)

i (t)E
(

X(l)
t

)

−
ntd∑

m=1
A(l,m)

i E
(

X(m)
t X(k)

t

)

−
ntd∑

m=1
A(k,m)

i E
(

X(m)
t X(l)

t

)

+
ntd∑

m=1
!

(l,m)
i (t)!(k,m)

i (t)

In the same fashion, we get

d
dt

E
(

X(k)
t

)
=a(k)

i (t)−
ntd∑

m=1
A(k,m)

i E
(

X(m)
t

)
(5a)

This leads to

d
dt

(
E(X(k)

t )E(X(l)
t )
)

=E
(

X(l)
t

) d
dt

E
(

X(k)
t

)
+E

(
X(k)

t

) d
dt

E
(

X(l)
t

)

=a(k)
i (t)E

(
X(l)

t

)
−

ntd∑

m=1
A(k,m)

i E
(

X(m)
t

)
E
(

X(l)
t

)

+a(l)
i (t)E

(
X(k)

t

)
−

ntd∑

m=1
A(l,m)

i E
(

X(m)
t

)
E
(

X(k)
t

)

Putting together these different parts gives us the ODE
satisfied by all covariances :

d
dt

Cov
(

X(k)
t ,X(l)

t

)
= d

dt

(
E
(

X(k)
t X(l)

t

)
−E(X(k)

t )E(X(l)
t )
)

=−
ntd∑

m=1

[
A(k,m)

i Cov
(

X(m)
t ,X(l)

t

)

+A(l,m)
i Cov

(
X(m)

t ,X(k)
t

)

−!(l,m)
i (t)!(k,m)

i (t)
]

(5b)

Note that in a vectorial formalism with the expectation
vector m and covariance matrix&, these sets of ODEs can
be written equivalently as follows

dmt
dt

=ai(t)−Aimt (A2)

d&t
dt

=−Ai&t − tr&t
trAi +!i

tr!i (A3)

Deriving the Analytical Tip Distribution for Known Models
All previously known results of analytic tip

distribution of univariate models fit in our framework.
They can be rediscovered by following the same scheme:

1. Reduce Equations (4a, 4b) or (5a, 5b) according to
the model.

2. Look for an analytical solution at any time "i,
by calculating manually the expectations and
covariances at "1,"2,"3,....

3. Prove by induction that the analytical solution
holds at any time "i.

These steps are explicitely written in the Online
Appendix (available on Dryad) for a number of models.
We summarize in Table A1 the results for the most
famous ones. We call hereafter tk,l the time of the most
recent common ancestor to lineages k and l, and tk,k the
death time of lineage k, equal to T if it survives until
present (see notations in Fig. A1).

Speeding up the Computation of Tip Distribution
For models considering a constant, A symmetric, and !=
#I.—Equations (4a, 4b) become:

E(Xt)=e("i−t)AiE(X"i )+
∫ t

"i

e(s−t)Ai ai(s)ds

Var(Xt)=
(

e("i−t)Ai
)

Var(X"i )
tr
(

e("i−t)Ai
)
+#2

∫ t

"i

e2(s−t)Ai ds

If Ai is symmetric with coefficients in R, it can be
diagonalized by orthogonal passage matrices : we can
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TABLE A1. Analytic tip distribution for models without interactions between traits or lineages

Code m0 &0 (mT )(k) (&T )(k,l)

BM m0 v0 m0 +btk,k v0 +#2tk,l

OU % 0 % #2

2$ e−$(tk,k+tl,l−2tk,l)
(
1−e−2$tk,l

)

OU % #2

2$ % #2

2$ e−$(tk,k+tl,l−2tk,l)

ACDC m0 v0 m0 v0 + #2
0

2r (e2rtk,l −1)
DD m0 v0 m0 v0 +#2

0
∑N−1

j=0 e2rn"j ("j+1 −"j)1tk,l>"j

Notes: We recall that tk,l is the absolute time of the most recent common ancestor to lineages k and l, and tk,k
is the death time of lineage k, equal to T if it survives until present.

Time

1

2

1

3

2

1

3

2

1

FIGURE A1. Formalism used in analytic formulae presented in Table A1.

exhibit a matrix Q verifying trQAiQ=+i is diagonal and
Q−1 = trQ.

E(Xt)=Qe("i−t)+i trQE(X"i )+Q

(∫ t

"i

e(s−t)+i ds

)
trQai

Var(Xt)=Qe+i("i−t)trQVar(X"i )Qe("i−t)+i trQ

+#2Q

(∫ t

"i

e2(s−t)+i ds

)
trQ

This expression can be used for the numerical
integration, in particular, of the PM model.

Note that with A diagonalizable but not symmetric,
Equations (4a, 4b) can also be reduced, but the
transposition of A is no longer A, and it does not lead
exactly to the same expression.

For the PM model.—We consider again the PM model
introduced in Nuismer and Harmon (2014). We
introduce the line vector u, with value uj that equals
1 if lineage j is alive, and 0 otherwise. In order to use
our framework, we further want to express the model
in the form given by Equation (2). This is achieved by
taking:

ai =$%tru

Ai = ($+S)diag(u)− S
utru

truu

!i =#diag(u)

where diag(u) is the diagonal matrix with diagonal
elements the elements of the vector u.

First, the tip distribution can be computed using the
general algorithm that numerically resolves the set of
ODEs given in Equations (5a, 5b). Second, the PM model
falls within the class of models studied in the previous
section, that is, with a symmetric A matrix. The tip
distribution can thus be numerically computed faster
using this reduction.

We describe here a third (and faster) way to derive the
tip distribution. It is based on an analytical reduction of
Equations (4a, 4b) that is specific to the PM model.

Remark that diag(u) and truu commute, leading to the
following calculus,

e("i−"i+1)Ai =e("i−"i+1)(($+S)diag(u)− S
utru

truu)

=e("i−"i+1)($+S)diag(u)e−("i−"i+1) S
utru

truu

= diag
(

e("i−"i+1)($+S)u
)

×

⎛

⎜⎝
∑

k≥0

(−("i−"i+1)S
utru

)k
(truu)k

k!

⎞

⎟⎠

where ew is the line vector with elements ewj . Further,
remark that for any k ≥1,

(truu)k = (truu)(truu)(truu)...(truu)

= tru(utru)(utru)...(utru)u

= (utru)k−1(truu)
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For simplicity, we will write in the following )="i −
"i+1, leading us to

e)Ai = diag
(

e($+S))u
)
⎛

⎜⎝I+
∑

k≥1

(
−S)
utru

)k
(utru)k−1(truu)

k!

⎞

⎟⎠

= diag
(

e($+S))u
)
⎛

⎝I+ 1
utru

⎛

⎝
∑

k≥1

(−)S)k

k!

⎞

⎠truu

⎞

⎠

= diag
(

e($+S))u
)(

I+ 1
utru

(
e−S)−1

)
truu

)

= diag
(

e($+S))u
)
+ 1

utru
diag

(
e−S)e($+S))u

)
truu

− 1
utru

diag
(

e($+S))u
)

truu

= diag
(

e($+S))u
)
+ 1

utru
(e$)−e($+S))) truu (A4)

where the last equality is due to the product by
tru, allowing to forget the cases where uj =0 in the
exponential.

We further need to compute
∫ "i+1

"i

e(s−"i+1)Ai aids =$%
∫ "i+1

"i

e$(s−"i+1)ds tru

=%
(

1−e$)
)

tru (A5)

We thus get m"−i+1
with the help of Equations (A4)

and (A5).
Now, in order to simplify Equation (4b), remark that

Ai and !i are symmetric, and so are e)Ai and e)Ai!i.
Moreover, !i is diagonal, and commutes with any other
matrix, leading to,

&"−i+1
=e)Ai&"i e

)Ai +
∫ "i+1

"i

e2(s−"i+1)Ai!i!ids

The first term can be computed thanks to Equation
(A4). For the second one, remark that truu diag(u)= truu,
thus leading to

∫ "i+1

"i

e2(s−"i+1)Ai!i!ids

=#2
∫ "i+1

"i

e2($+S)(s−"i+1)ds diag(u)

+ #2

utru

∫ "i+1

"i

(
e2$(s−"i+1)−e2($+S)(s−"i+1)

)
ds

× truu diag(u)

=#2 (1−e2($+S)))
2($+S)

diag(u)

+ #2

utru

(
1−e2$)

2$
− 1−e2($+S))

2($+S)

)
truu (A6)

We thus get &"−i+1
with the help of Equations (A4)

and (A6).

For the GMM model.—Assume that we rank first the n1
plant traits, before the n2 butterfly traits in the X vector.
Traits evolve following the equation:

∀k ∈ {1,...,n1}, dX(k)
t

=S

⎛

⎝d1 + 1
n2

n1+n2∑

l=n1+1

X(l)
t −X(k)

t

⎞

⎠dt+#dW(k)
t

∀l∈ {n1 +1,...,n1 +n2}, dX(l)
t

=S

⎛

⎝d2 + 1
n1

n1∑

k=1

X(k)
t −X(l)

t

⎞

⎠dt+#dW(l)
t

In the general framework formulation, this leads to :

a(t)= tr(Sd1,...,Sd1,Sd2,...,Sd2
)

A=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S 0 ... 0 −S
n2

... ... −S
n2

0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...

0 ... 0
. . . −S

n2
... ... −S

n2

−S
n1

... ... −S
n1

. . . 0 ... 0
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0
−S
n1

... ... −S
n1

0 ... 0 S

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

!=#I

We would like to be able to compute the expectation
and variance easily during each epoch. We thus want to
reduce Equations (4a, 4b). For simplicity, we will write
in the following )="i −"i+1. With some work, we can
find the generic element of the matrix e)A.

The main idea is to decompose A=S(I+Z), where I
is the identity matrix, and Z is made of two blocks with
elements −1

n2
and −1

n1
. I and Z commute, meaning that :

e)A =e)S(I+Z) =e)SIe)SZ =e)Se)SZ

Moreover, we show in the Online Appendix (available
on Dryad) how to find by induction the generic element
of the matrix Zk , and further use this to find the
generic element of the matrix e)SZ =∑k≥0

Sk)kZk

k! = I+
∑

k≥1
Sk)kZk

k! . From there, we get the main elements from
which to derive the expectation vector and covariance
matrix. Full derivations are shown in Online Appendix
(available on Dryad).
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pollinator-mediated selection for increased flower brightness and
contrast in a deceptive orchid. Evolution 70:716–724.

Thomas G.H., Freckleton R.P. 2012. MOTMOT: models of trait
macroevolution on trees. Method. Ecol. Evol. 3:145–151.

Thomas G.H., Freckleton R.P., Székely T. 2006. Comparative analyses of
the influence of developmental mode on phenotypic diversification
rates in shorebirds. Proc. Roy. Soc. B 273:1619–1624.

Uyeda J.C., Caetano D.S., Pennell M.W. 2015. Comparative analysis
of principal components can be misleading. Syst. Biol. 64:
677–689.

Van Valen L. 1973. A new evolutionary law. Evol. Theor. 1:1–30.
Weiblen G.D. 2004. Correlated evolution in fig pollination. Syst. Biol.

53:128–139.
Weir J.T., Mursleen S. 2013. Diversity-dependent cladogenesis and trait

evolution in the adaptive radiation of the auks (Aves: Alcidae).
Evolution 67:403–416.


	A Unifying Comparative Phylogenetic Framework Including Traits Coevolving Across Interacting Lineages

