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Abstract

The species abundance distribution (SAD) is one of the few universal patterns in

ecology. Research on this fundamental distribution has primarily focused on the study of

numerical counts, irrespective of the traits of individuals. Here we show that considering

a set of Generalized Species Abundance Distributions (GSADs) encompassing several

abundance measures, such as numerical abundance, biomass and resource use, can

provide novel insights into the structure of ecological communities and the forces that

organize them. We use a taxonomically diverse combination of macroecological data sets

to investigate the similarities and differences between GSADs. We then use probability

theory to explore, under parsimonious assumptions, theoretical linkages among them.

Our study suggests that examining different GSADs simultaneously in natural systems

may help with assessing determinants of community structure. Broadening SADs to

encompass multiple abundance measures opens novel perspectives in biodiversity

research and warrants future empirical and theoretical developments.
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I N T R O D U C T I O N

The species abundance distribution (SAD) describes the

commonness and rarity of species in ecological communities.

The SAD is one of the oldest patterns in ecology (Fisher et al.

1943; Preston 1948; MacArthur 1957), and remains at the

core of ecological research (McGill et al. 2007; Alonso et al.

2008; Dornelas & Connolly 2008). Repeatable patterns in the

shape of the SAD across taxa and environments (the hollow

curve, with few dominant and many rare species) suggest that
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this distribution reflects common underlying principles that

structure ecological communities. The SAD is widely used

to test alternative hypotheses regarding the determinants

of community structure and biodiversity (Caswell 1976;

Hubbell 2001; Etienne & Olff 2005; Chave et al. 2006;

McGill et al. 2006a).

Most work on the SAD has focused on the frequency

distribution of the number of individuals per species

(numerical abundance). This is a natural way to characterize

SADs and predictions for this type of abundance distribu-

tion are available for a variety of models. Numerical

abundance is commonly used in community ecology as a

measure of the local dominance or success of a species

(Preston 1962). The use of numerical abundance also has a

precedence in population biology as the most natural

measure of demography (Volterra 1926). In evolutionary

biology, it is an important determinant of the genetic

variability in populations, influencing the relative strength of

selection and genetic drift (Wright 1938). However, the

number of individuals is only one way to characterize the

relative abundance of species within communities, and there

are several reasons why abundance has also been measured

differently. Abundance has been measured as the biomass

and ⁄ or resource use of species populations in systems

ecology, in order to better understand compartmentalization

and fluxes of carbon, nutrients and energy in ecosystems

(Odum 1983). Combined measures of abundance and

biomass have also been used by marine biologists as a

diagnostic tool (Warwick 1986). Numerical abundance,

biomass, resource use and their interrelationship have been

the main focus of empirical and theoretical macroecology, to

understand the division of food and space among species

(Brown & Maurer 1989; Thibault et al. 2004; White et al.

2004; Connolly et al. 2005; Harte et al. 2008). Finally, for

pragmatic reasons (e.g. modularity in plants) field ecologists

have sometimes used percent cover, point quadrat fre-

quency or biomass as proxies for numerical abundance

(Wilson et al. 1996; Chiarucci et al. 1999; Tokeshi 1999;

Latimer et al. 2005).

Patterns observed for different abundance measures are

expected to be similar if numerical abundance, biomass and

resource use are proportional to one another. This condition

may be achieved if interspecific differences are negligible, or

if all individuals can be considered to be ecologically

equivalent (MacArthur 1960; Hubbell 2001). For example,

ecologists have often viewed the �classical� SAD (con-

structed from numerical abundance) as representing the

outcome of rules governing how species partition resources

(Motomura 1932; MacArthur 1957, 1960; Sugihara 1980;

Tokeshi 1990, 1999; Marquet et al. 2003). For this charac-

terization to be valid, it is necessary to assume that

individuals across species are comparable in their body-size

and resource use, as originally noted by MacArthur (1960):

‘‘It is assumed that the species whose abundances are

being compared are roughly of same size, so that an

individual of one species is comparable to an individual of

any of the others.’’

This assumption is likely violated in natural systems for

several reasons. First, within and between communities,

species� body-sizes typically vary by several orders of

magnitude (Brown & Nicoletto 1991), and large-bodied

species generally use more energy than small-bodied ones

(Kleiber 1947; Peters 1983). Second, the most numerous

species do not always contain the most biomass or use the

most resources, as they sometimes contain many small

individuals (Brown & Maurer 1986; Maurer & Brown 1988).

Third, individuals of the same size can have a very different

resource use, as a consequence of differences in traits such as

internal nutrient concentrations (Sterner & Elser 2002) or life

histories (Bielby et al. 2007). Finally, it has been increasingly

realized that individuals within populations of the same

species can strongly vary in size, due in part to age structure,

with important consequences for ecological interactions

(Werner & Gilliam 1984; Kooijman 2000). Hence, different

abundance measures are not necessarily well correlated

(Saint-Germain et al. 2007), and SADs constructed from

different abundance measures may well exhibit fundamental

differences. Partly for this reason, discussion on the use of

SADs has drifted away from the perspective of resource

partitioning and ecosystem functioning.

It has recently been suggested that investigating abun-

dance measures other than the number of individuals may

lead more directly to mechanistic theory in ecology, placing

alternative currencies at the front line of future SAD

research (McGill et al. 2007). Three fundamental questions

follow naturally: (i) What are the similarities and differences

in the way individuals, biomass and resource use are

distributed among species? (ii) What are the constraints that

link the distributions constructed from different abundance

measures? (iii) What insights can be gained from exploring

the distribution of biomass and resource use among species?

Aspects of these questions generated a suite of papers with

equivocal conclusions (Harvey 1987; Sugihara 1989; Pagel

et al. 1991; Taper & Marquet 1996). In these papers, the

authors focused on comparing the variance between the

distributions of numerical abundance, biomass and resource

use, and drew upon two classical allometries (relationships

of the form cza): the allometry between population density

and body-size (Damuth 1981), and between body-size and

energy use (as a proxy for resource use, Kleiber 1947). Some

of the results from this body of work suggested that the

equitability with which species divide individuals, biomass or

resource use is similar (Sugihara 1989; Taper & Marquet

1996) while others suggested important differences (Harvey

1987; Tokeshi 1990; Pagel et al. 1991). Since then, there has

been continued focus on species numerical abundance
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distributions, but few papers have examined SADs in

parallel using alternative measures for abundance (but see

Thibault et al. 2004; Connolly et al. 2005; Saint-Germain

et al. 2007).

In this paper we generalize the �classical� SAD based on

numerical abundance into a set of Generalized Species

Abundance Distributions (GSADs) that encompass alterna-

tive measures, specifically biomass and resource use. We start

with an empirical analysis of GSADs for four major

taxonomic groups at various spatial scales. This empirical

analysis aims to test the equivalence between GSADs, and to

search for general patterns in the way GSADs differ from

one another. We then develop, under parsimonious assump-

tions, a conversion framework that links GSADs to one

another. This theoretical analysis provides the first step

towards a theoretical understanding of differences between

GSADs. We illustrate the utility of our theoretical framework

for interpreting the data, and discuss the implications of our

findings for our understanding of community structure.

Finally, we highlight future developments that are needed to

fully understand the interrelationships between GSADs.

E M P I R I C A L E V I D E N C E F O R M A J O R D I F F E R E N C E S

B E T W E E N G S A D S

We compare GSADs within a wide variety of taxonomic

groups and habitats, by comparing their variance, skewness

and spatial scaling. We use the terminology �species

individuals distribution� (SID) to refer to the �classical�
SAD (the one constructed from numerical abundance),

while SBD and SED refer to the species biomass and energy

distributions respectively (Table 1).

Data and methods

We use data from a total of 1533 communities spanning

four major taxonomic groups: birds, fish, small mammals

and trees. The bird data is from the Breeding Bird Survey of

North America (BBS; n = 1400; Robbins et al. 1986; Sauer

et al. 2008), the fish data from an island scale survey of

Trinidad (n = 76; Magurran & Phillip 2001), the small

mammal data from the Sevilleta LTER (Ernest et al. 2000)

and the Portal Project (n = 7; Brown 1998; Ernest et al. in

press), and the tree data from a 50-ha tropical forest plot at

Barro Colorado Island (BCI; n = 50 plots of 1 ha; Condit

1998). Each bird species is assigned an average mass from

Dunning (1993). The population biomass of each fish

species comes from a direct measurement in the field. The

population biomass of each mammal species is obtained

from summation of individual body-size measurements.

Individual tree biomass is estimated from an empirical

interspecific allometry based on diameter at breast height

(Brown 1997), providing a first approximation of more

specific allometries incorporating wood density (Chave et al.

2003).

Empirical data on the energy use (a proxy for resource

use) of each species within sampled communities are

typically unavailable. We estimate per-capita energy use for

birds and mammals based on published allometries for field

metabolic rates for the respective groups (Nagy et al. 1999).

For fish and trees, we use published allometries for basal

metabolic rates (Gillooly et al. 2001). A detailed description

and treatment of the data sources can be found in

Appendix S1. In evaluating the results, the reader should

note that while numerical abundance and biomass are either

Table 1 Measurements, their corresponding distributions and notations

Measurement Symbol Macroecological distribution Notation

Generalized SADs

(GSADs)

Number of individuals: measured in a fixed area

(density)

N Species individuals distribution SID

Biomass: sum of individual masses over a

species� population

M Species biomass distribution SBD

Energy use: sum of individual energy use over a

species� population (reflects resource

utilization)

E Species energy distribution SED

Other macrological

distributions

Body-size: average body-mass over a species�
population

�m Species size distribution SsD

Individual energy use: average individual energy

use over a species� population (reflects

individual resource use)

�e Species individual energy

distribution

SeD

We denote abundance measures by upper-case symbols (e.g. N, M and E) and measures at the individual level (per-capita measurements) by

lower-case symbols (e.g. m and e). Overlines stand for averages over individuals of a given species (e.g. �m and �e). The �classical� species

abundance distribution (the one constructed from the number of individuals) is coined �species individuals distribution� (SID), while the term

�generalized species abundance distributions� (GSADs) is used to refer to any of the distributions of numerical abundance (SID), biomass

(SBD) or energy use (SED).
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measured directly or estimated with confidence, energy use

is necessarily calculated by making assumptions about the

form of the relationship between metabolic rate and body-

size. We used the best available estimations of energy

distributions given the nature of our data.

We compare the SID, SBD and SED using three simple

characterizations: (i) the variance of log-transformed abun-

dance values, a measure directly related to many common

evenness metrics (e.g. Evar; May 1975; Smith & Wilson

1996), and used in previous comparisons of GSADs

(Harvey 1987; Sugihara 1989; Pagel et al. 1991; Taper &

Marquet 1996), (ii) the skewness of log-transformed

abundance values (e.g. lognormal distributions have no

skew), a measure of asymmetry in a frequency distribution

based on the third central moment, widely used to

characterize SADs (e.g. Nee et al. 1991; Gregory 1994;

Hubbell 2001; Magurran 2003; McGill 2003) and (iii) visual

evaluation of the variation of the shape of the distributions

with spatial scale (i.e. unveiling; Preston 1962; Nee et al.

1991; Connolly et al. 2005). Using the log-transformed data

focuses on the shape of the distribution as usually

characterized by ecologists (e.g. the famous �Preston plots�;
Preston 1962) and eliminates any dependence on measure-

ment units. In combination these three characterizations

provide a broad and general picture of the similarities and

differences between species abundance distributions (SADs)

based on different measures.

How GSADs differ from one another

We compare for each local community within each data set

the variance of log-transformed abundance measures against

one another (Fig. 1, left panels, see also details and statistics

in Appendix S2). Under the null hypothesis that GSADs are

equivalent, the resulting data points would cluster around

the 1 : 1 line. Rather than this null result, the data points

consistently lay above the 1 : 1 line, demonstrating that the

partitioning of individuals, biomass and energy is not

equivalent. Overall, SIDs are more evenly distributed than

SBDs and SEDs, and SEDs more evenly distributed than

SBDs. This general pattern occurs across all the data sets,

though it is less consistent in the fish data.

We compare for each local community within each data

set the skewness of log-transformed abundance measures

against one another (Fig. 1, right panels and Appendix S2).

Under the null hypothesis that GSADs are equivalent, the

resulting data points would cluster around the 1 : 1 line.

Deviations from this null assumption are less consistent

among data sets than the results concerning variance. The

mammal communities appear to have equivalent skewness

regardless of the abundance measure. The other three data

sets do tend to exhibit changes in the average sign and ⁄ or

magnitude of the skewness among the different abundance

measures. The bird data do not show a clear tendency for

the direction of skew of the SID (there are about as many

sites with positively skewed distributions as with negatively
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Figure 1 How diversity distributions constructed from different

abundance measures differ from one another. Comparison of the

variance (left panels) and skewness (right panels) between GSADs.

Each data point represents a local community. Black triangles: birds;

n = 1400. Blue squares: fish; n = 76. Red circles: mammals; n = 7.

Green crosses: trees; n = 50. The data points would fall on the black

1 : 1 line if GSADs were equivalent with respect to variance and

skewness. A Var–Var plot between two different abundance measures

(left panels) illustrates which of the two is the most evenly distributed

between species. Top left: individuals are overall more evenly

distributed than biomass (statistically significant in all data sets); middle

left: individuals are overall more evenly distributed than energy use

(significant in all data sets except the fish); bottom left: energy use is

overall more evenly distributed than biomass (significant in all data

sets). The skewness–skewness plots (right panels) show that, except for

the mammals, skewness is not equivalent among abundance measures.

Detailed results and statistics are provided in Appendix S2. Two

outliers from the fish data were excluded from the results in

the left panels to allow for clearer presentation (Outlier 1:

Var log Nð Þ½ � ¼ 1:0, Var log Eð Þ½ � ¼ 20:3, Var log Mð Þ½ � ¼ 48:5; Out-

lier 2: Var log Nð Þ½ � ¼ 1:7, Var log Eð Þ½ � ¼ 4:0, Var log Mð Þ½ � ¼ 15:3).
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skewed distributions), while the SBD and SED are generally

positively skewed. The fish data show the opposite pattern

with more communities having positively skewed SIDs, and

no clear tendency in the skewness of the other GSADs. The

plants show the most extreme differences, cleary shifting

from positively skewed SIDs to negatively skewed SBDs

and SEDs. In sum, with the exception of the mammal data,

all data sets exhibit differences in skewness among different

GSADs, but with no clear general pattern.

We compare within each data set the global spatial scaling

of GSADs. In general, the shape of sampled SADs differs

from that of the underlying community SAD (Green &

Plotkin 2007). In particular, SADs often appear truncated

when the rarest species are not sampled (veil effect; Preston

1962). Recently, Connolly et al. (2005) showed that the SID

unveils at much larger spatial scales than the SBD. In other

words, non-truncated SBDs are obtained at spatial scales

where SIDs are still mostly truncated. Our data suggest that

what Connolly et al. refer to as a �scale discrepancy�, a

phenomenon in which the SID and the SBD unveil at

different spatial scales, is not specific to the coral systems

they studied. Indeed, this phenomenon also occurs in each

data set with multiple scales of observation (i.e. all the systems

except the mammals; Fig. 2), and also holds for the SED

(although in the case of the fish data the unveiling is less rapid

for energy than for biomass). This phenomenon provides

further support for fundamental differences between

GSADs.

A T H E O R E T I C A L E X P L O R A T I O N O F T H E L I N K

B E T W E E N G S A D S

The empirical results on variance, skewness and unveiling

presented above demonstrate clear deviations from the null

hypothesis that GSADs are equivalent. These results also

show general patterns in the difference between GSADs.

Understanding the origin of deviations between GSADs in

natural communities will likely provide clues about the

processes underlying their structure. Here, we provide the

first steps of a conversion framework to analytically link

GSADs to one another. Developing such a framework

necessarily involves making assumptions about the way

different abundance measures relate to one another. After

presenting general conversions between the shape and

moments of distributions under these assumptions, we

evaluate their accuracy in predicting our data.

Conversion framework

We aim for generality and investigate the conversion

between any two diversity distributions (probability density

function describing the frequency of species with a given

attribute) SX and SY constructed from any log-transformed

measurements X and Y. In the context of converting

GSADs, X and Y may be replaced by logðN Þ, log Mð Þ or

log Eð Þ (see Empirical Evaluation below). The conversion

between two diversity distributions SX and SY is given by

basic probability theory:

SY Yð Þ ¼
Z

PðY jX ÞSX Xð ÞdX ð1Þ

P Y jXð Þ is the probability that a species with measurement

X also has measurement Y. For simplicity, we use the integral

notation for both continuous and discrete X, but the integral

should be interpreted as a sum when X is discrete. If X is

independent of Y, or in other words if X has no explanatory

power on Y, P Y jXð Þ ¼ P Yð Þ and no relationship between

SX and SY can be derived. However, abundance measures are

not independent (Figs S1 and S2). We thus assume that X

has an explanatory power on Y, and write:

Y ¼ f Xð Þ þ Z ð2Þ
where Z is a random variable capturing the deviation of Y

from its functional dependency ( f ) on X. By writing this

equation, we implicitly assume that ecological and evolu-

tionary processes act primarily on X, and that Y is deter-

mined, with some variation, by X. We further assume that Z
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Figure 2 Diversity distributions constructed from biomass and

energy use unveil faster than distributions constructed from

numerical abundance. Plain lines represent GSADs at the largest

available spatial scale. Birds: data at the continental scale; Fish: data

at the island scale; Trees: data at the 50 ha scale. Dotted lines

represent data averaged over the local communities. Variation

around the mean is small and does not influence the general

conclusion stemming from these analyses. The mammal data

contain local communities that cannot legitimately be combined

for this type of unveiling analysis.
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is independent of X. These assumptions may be violated in

natural communities, and should be considered as first

parsimonious approximations.

In the particular case where X is the main explanatory

variable for Y, Z can be thought of as a residual error e
independent of X, usually normally distributed. Denoting Pe

the probability density distribution of this error, it is

straightforward to show (Appendix S3) that the distribution

SY is related to the distribution SX by:

SY Yð Þ ¼
Z

Pe Y � f Xð Þð ÞSX Xð ÞdX ð3Þ

This general equation may be used to derive relationships

between SX and SY for any specific form of the distributions

of X and Y, the functional relationship between them, and

the form of the residual error, provided that the error is

independent of X. Table 2 shows specific results when the

variation Z around the relationships between X and Y is

either ignored or normal (i.e. log-normal on a linear scale),

and when f is either unspecified or linear, which is the case

for a power-law allometry between variables (see Appen-

dix S3 for details).

There is evidence for the existence of power-laws in nature.

In particular, empirical and theoretical work support that

individual energy use scales with body-size as approximately

e / m
3
4 (size–energy relationship; Kleiber 1947; West et al.

1997) and that in some cases population density scales with

body-size as N / �m�
3
4 (size–density relationship; Damuth

1981; Peters 1983; White et al. 2007). When these relation-

ships are assumed to be power-law, the relationship between

any of N, M and E is also expected to be power-law

(Appendix S4). Power-laws with log-normal error (corre-

sponding to linear relationships with normal error for

logarithmically transformed variables) are also the simplest

and most natural approximations describing the relationships

between numerical abundance, biomass and the energy use of

species. By substituting two of log Nð Þ, log Mð Þ or log Eð Þ in Y

and X, the formulas in Table 2 show that GSADs are

interrelated patterns rather than independent ones. These

formulas also show that a priori, the shape of GSADs is

not conserved: resource division rules predicting a

log-normal SBD (Sugihara 1980) may well produce a non

log-normal SID.

Converting the variance and skewness of GSADs

Many studies are more interested in simple characterizations

of the distributions based on their higher moments, such as

the variance and skewness, than in their detailed shape.

Here, we investigate the relationship between the variance

and skewness of GSADs. We consider the case of power-

law allometries, as they constitute convenient approxima-

tions. On a log-log scale, a power-law allometry with

exponent aY|X where X is the explanatory variable reads:

Y ¼ log cY jX
� �

þ aY jX X þ ZY jX ð4Þ

where cY|X is a normalization constant. Below, we assume as

above that ZY|X is independent of X. The relationship

between the variance of X and Y is straightforward:

Var Y½ � ¼ aY jX
2Var X½ � þ Var ZY jX

� �
ð5Þ

Note that here the variance of X and Y are not

(measurement) errors of a single value of X and Y for a

single species. Rather, Var X½ � and Var Y½ � pertain to the

overall variance in observed X and Y values across species.

When applied to the SID, SBD and SED, this relationship

may be used to examine under which conditions biomass

and energy use are expected to be more or less equitably

distributed than individuals (Appendix S4).

Table 2 Conversion formulas

No error Log-normally distributed error

General allometry SðY ÞðY Þ ¼
SðxÞðf �1ðY ÞÞ
jf 0ðf �1ðY ÞÞj SðY ÞðY Þ ¼

Z
1

r
ffiffiffiffiffi
2p
p exp

�ðY � f ðxÞÞ2

2r2 SX ðX ÞdX

Power-law

allometry SðY ÞðY Þ ¼
1

jaj SX

1

a
ðY � logðcÞÞ

� �
SðY ÞðY Þ ¼

Z
1

r
ffiffiffiffiffi
2p
p exp

�ðY � logðcÞ � axÞ2

2r2 SX ðX ÞdX

Formulas providing the conversion from any macroecological distribution SX (constructed from measurement X) to any macroecological

distribution SY (constructed from measurement Y ). We assume that X is an explanatory variable for Y, that Y is functionally linked to X

through the relationship f, and that the deviation Z from this functional relationship is independent of X. X and Y are typically log-

transformed data. On a log-log scale, a power-law allometry between X and Y, with exponent aY|X reads Y ¼ logðcY jX Þ þ aY jX X þ ZY jX
where cY|X is a normalization constant, i.e. f is linear ( f ðxÞ ¼ logðcÞ þ ax)). For example, aM jN ¼ ½1þ ð1=aN j�mÞ� and

aEjN ¼ ½1þ ðaejm=aN j�mÞ� where aN j�m is the power-law exponent of the size–density relationship (Damuth 1981; White et al. 2007), and ae|m is

the power-law exponent of the relationship between individual energy use and body-size (Kleiber 1947; Peters 1983; Appendix S3). In the

absence of error about the relationships between measurements, these conversions correspond to a simple change of variable.
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The skewness of a variable X is given by:

Skew X½ � ¼
E X � E X½ �ð Þ3
� �

Var X½ �
3
2

ð6Þ

The relationship between the skewness of X and Y, for

any centred and unskewed random variable ZY|X (e.g.

normally distributed on a log-scale; see Appendix S3 for the

more general case of skewed error), is given by:

Skew Y½ � ¼
a3

Y jX E X � E X½ �ð Þ3
� �

aY jX 2Var X½ � þ Var ZY jX
� �� �3

2

ð7Þ

This relationship shows that the direction of the

skewness of distributions may change if the power-law

exponent aY|X is negative. The amplitude of the skewness

is expected to be conserved for a perfect allometry between

X and Y (ZY|X = 0), but to decrease from SX to SY in the

more realistic case when the allometry is not perfect.

Equations 5 and 7 provide the relationships between the

second and third moments of SX and SY, under the

hypothesis that X is an explanatory variable for Y. Assuming

instead that Y is an explanatory variable for X, the

relationships will be different, as a result of error propaga-

tion (Taper & Marquet 1996; Appendix S3). These relation-

ships may thus be used to evaluate, in a given system, if data

are most consistent with a model where X or Y is

considered to be an explanatory variable for the other. This

possible application is illustrated below.

Illustration and empirical evaluation

We illustrate the developments above by focusing on the

relationship between Var log M½ � and Var log N½ �; we test the

ability of Equation 5 to predict patterns in the empirical

data, and discuss their potential application for deciphering

processes driving community assembly. We note that the

biomass of a species is directly given by M ¼ N �m, where �m
is the average body-size of the species� population.

To derive the relationship between Var log M½ � and

Var log N½ �, we need to assume, as noted above, that either

M or N is an explanatory variable for the other. In natural

systems, complex ecological interactions act in concert to

determine the biomass and numerical abundance of species.

It is likely that neither M is a direct explanatory variable for N,

nor N is a direct explanatory variable for M, but rather that

processes act both on N and M in a correlative manner

(Taper & Marquet 1996). However, we ask the following

questions: are our data consistent with the hypothesis that

community structure is primarily driven by processes such as

resource division rules (e.g. Marquet et al. 2003), acting on the

relative biomass of species more directly than on their relative

population size? In this case, M is the natural explanatory

variable, constraining population sizes and the demographic

processes from which they result. Alternatively, are our data

consistent with the hypothesis that community structure is

primarily driven by demographic processes (e.g. Maurer

1999), acting on the numerical abundance of species more

directly than on their biomass? In this case, N is the natural

explanatory variable, constraining the biomass of species.

To answer these questions, we consider two simplified

scenarios used as benchmarks for more realistic models. In

the first scenario, ecological processes determine the

variance in the SBD, and we aim to predict the variance

in the SID. We test two alternative hypotheses: either the

body-size of species has no effect on their ability to

accumulate biomass (e.g. large species have small population

sizes and no advantage in resource monopolization), or the

body-size of species influences their ability to accumulate

biomass (e.g. large species have an advantage in resource

monopolization). In the later case, we assume that the

dependency of biomass on body-size is power-law (expo-

nent aM j�m). The resulting relationship between the variances,

obtained with the approach outlined in the Conversion

Framework, is given in Table 3 (formulas in the top table,

Appendix S3). In the second scenario, we assume that

ecological processes determine the variance in the SID, and

we aim to predict the variance in the SBD. We test two

alternative hypotheses: either the body-size of species has no

effect on their numerical abundance (i.e. N is independent

of �m), or the body-size of species influences demographic

processes, and thus ultimately numerical abundance (e.g.

small species have shorter generation times and reach higher

densities). In the later case, we assume that the dependency

of numerical abundance on body-size (i.e. the size–density

relationship; Damuth 1981; White et al. 2007) is power-law

(exponent aN j�m). The predicted relationships between the

variance corresponding to each scenario are given in Table 3

(formulas in the bottom table; Appendix S3).

We test the ability of each scenario to reproduce the data.

When body-size is assumed to have an effect on either

numerical abundance or biomass, the power-law exponent

of the corresponding relationship is estimated by regression

in each local community. We compare observed and

predicted values for the variance (Fig. 3), and test the

performance of the various predictions by evaluating their

accuracy, as measured by the standardized root mean

squared error (Table 3; predictions with best accuracy are

the ones with lowest values). The results suggest that our

data are best described when the numerical abundance of

species is considered to be the primary explanatory variable

in the system, and species� biomass results from an

attribution of numerical abundance across species indepen-

dent of their body-size. The second best prediction is

obtained when the relative biomass of species is considered
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to be the primary explanatory variable, and their numerical

abundance results from an attribution of biomass across

species dependent on their body-size (i.e. body-size influ-

ences the capacity of species to accumulate biomass). The

third best prediction is obtained when the relative biomass

of species is considered to be the primary explanatory

variable, and their numerical abundance results from an

attribution of biomass across species independent of their

body-size. Finally, considering the numerical abundance of

species as the primary explanatory variable, with a depen-

dency of species� capacity to accumulate individuals on their

body-size, yields particularly unrealistic predictions. This

simple analysis suggests that in our systems, the main effect

of the body-size of a species is to affect its ability to

accumulate biomass rather than to influence population

density via the production or recruitment of new offspring.

S Y N T H E S I S A N D F U T U R E D I R E C T I O N S

Differences between GSADs

Models of SADs based on resource division rules often

assume that individuals, biomass or resource use are

interchangeable:

‘‘A niche translates ultimately into numbers of organisms

(or biomass)’’ (Sugihara 1980).

The question of the interchangeability between abun-

dance measures was raised over 20 years ago (Harvey 1987),

generating a decade long debate (Sugihara 1989; Pagel et al.

1991; Taper & Marquet 1996) that ended in the following

terms (Taper & Marquet 1996):

‘‘The apportionment of individuals and resources, among

species, are equivalent processes.’’

Our results contradict this statement. Below we discuss

the cause and consequence of differences in the variance,

skewness, and unveiling of GSADs.

The first difference between GSADs observed in our data

is their variance (Fig. 1). This result differs from the result

of Taper & Marquet (1996) due to the difference in our

approach to analyzing empirical data. The authors estimated

the empirical variance in energy among species using a

theoretical relationship linking variances in energy and

numerical abundance. As they note, their estimation likely

suffers from error propagation. In our empirical analyses,

we directly estimate the energy use of each species from

fitted relationships between field or basal metabolic rate and

body-size, and calculate the variance among species a

posteriori. Because we have direct data on organismal body-

size (except for the birds, although the error introduced by

using a mean species mass is expected to be small), we

eliminate the principal source of error in the theory-based

variance prediction. One limitation of our approach is that

Table 3 Four different predictions for the variance–variance relationship between GSADs, and their comparison to data

Numerical abundance predicted from biomass

M does not depend on species� body-size M depends on species� body-size

Predicted relationship Var½log N � ¼ Var log M½ � þ Var log m½ � Var½log N � ¼ 1� 1
aM jm

	 
2

Var log M½ � þ Var ZN jM
� �

Birds 174 17.3

Fish 27.5 12.3

Mammals 4.59 6.95

Trees 729 0.824

Biomass predicted from numerical abundance

N does not depend on species� body-size N depends on species� body-size

Predicted relationship Var½log M � ¼ Var log N½ � þ Var log m½ � Var½log M � ¼ 1þ 1
aN jm

	 
2

Var log N½ � þ Var ZM jN
� �

Birds 14.3 1.51e+07

Fish 10.9 6.98e+03

Mammals 0.108 1.04e+03

Trees 0.114 1.07e+08

Upper table: M is considered to be an explanatory variable for N. Lower table: N is considered to be an explanatory variable for M. Left

column: the attribution of biomass (top) or population size (bottom) across species is assumed to be independent of body-size. Right column:

the body-size of species is assumed to have an effect on their capacity to accumulate biomass (top) or individuals (bottom). In this case, the

dependence of M or N on �m is assumed to be power-law (exponents aM j�m and aN j�m , respectively). Reported values are standardized root mean

square errors (RMSE=SD, where RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n

i¼1 xi � yið Þ2=n

q
with xi and yi observed and predicted values, respectively, and SD is the

standard deviation of observed values). aM j�m and aN j�m are estimated directly from the raw data, in each community separately. Standardized

RMSE measure the accuracy of predictions to observations (low values correspond to a good accuracy, in bold).
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we ignore the error introduced by using the size–energy

allometry. However, including error propagation would

increase the variance in energy-use, given the biologically

realistic assumption that metabolic rate is determined by

body-size (�body-size causal� model). This suggests that the

disparity in variances between the SED and the SID is likely

to be even greater than we observed. Furthermore, as our

analyses of biomass and numerical abundance are based on

direct field measurements, the disparity in variances between

the SBD and the SID is unequivocal.

In the four taxonomic groups analysed, biomass and

resources are overall less equitably distributed among

species than are individuals. Intuitively, small-bodied species

live below the density for which they would receive an equal

share of the total biomass or resources, while large-bodied

species live above this density. In other words, large species

have an advantage in resource monopolization, an idea

sometimes summarized as �bigger is better� (Brown &

Maurer 1986; Maurer & Brown 1988; Pagel et al. 1991;

McGill 2008). These observations go against the idea

embedded in the so-called �energetic equivalence rule�
(Damuth 1981). Nearly 30 years ago, Damuth (1981)

gathered data showing that the numerical abundance of a

species decreases as a � 3
4

power of its body-size, which,

combined with the 3
4

power-law relationship between body-

size and metabolic rate, suggests that the resource use of a

species is independent of its population density and body-

size. Under this rule, one would expect the variance in

energy among species to be approximately constant with

respect to the variance in numerical abundance. While our

estimation of energy use is to be taken with caution, our

analyses strongly suggest that the energy equivalence rule is

not achieved in our data sets, where variance in energy and

numerical abundance are highly correlated. These results are

consistent with the observation that the energetic equiva-

lence rule is rarely supported within local communities

(Blackburn & Gaston 1997; White et al. 2007).

The second difference between GSADs observed in our

data is their skewness (Fig. 1). Early statistical explanations

for the origin of the shape of the SAD (May 1975) were

largely based upon the normal (unskewed) nature of the

SAD (plotted on a log-scale). More recent developments

have been motivated by the repeated observation that SADs

tend to exhibit a significant left skew on a logarithmic scale

(Nee et al. 1991; Gregory 1994; Hubbell 2001; Magurran

2003; McGill 2003). Our results suggest that future theories

could profitably focus on why different abundance measures

have different degrees of skew.

The third difference between GSADs observed in our

data is the scale at which they unveil (Fig. 2). Biomass and

energy distributions unveil at a much smaller spatial scale

than SIDs. These results are consistent with patterns

observed by Connolly et al. (2005) in coral and fish

communities. Connolly et al. (2005), basing their justification

on Taper & Marquet (1996), suggested that the differences

in unveiling between the SID and SBD provide support

against niche-based origins of the SAD. Our results suggest

that SID and SBD are not expected to be similar,

irrespective of which ecological processes generate them.

The difference in the spatial scale at which SID and SBD

unveil appears to be a general phenomenon, and also applies

to the energy distribution.

The rapid unveiling of biomass and resource use suggests

that GSADs based on these measures may avoid a number

of problems associated with the distribution of numerical

abundance. The number of individuals or areas sampled in

typical ecological surveys is often too small to yield

completely unveiled SIDs, particularly in species-rich

systems, such as tropical or microbial communities. Recon-
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Figure 3 The relative ability of different variance–variance rela-

tionships to predict data can provide insights into processes.

Comparison between variance values observed (x-axis) and

predicted ( y-axis) under four different scenarios. Each data point

represents a local community. Black triangles: birds; n = 1400. Blue

squares: fish; n = 76. Red circles: mammals; n = 7. Green crosses:

trees; n = 50. Upper panels: M is assumed to be an explanatory

variable for N. Lower panels: N is assumed to be an explanatory

variable for M. Left panels: the attribution of biomass (top) or

population size (bottom) across species is assumed to be

independent of body-size. Right panels: the attribution of biomass

(top) or population size (bottom) across species depends on their

body-size. Note the log scale on the y-axis of the bottom right

panel showing the particularly bad prediction obtained when

assuming that N is an explanatory variable and that the attribution

of population size across species depends on their body-size.

496 H. Morlon et al. Idea and Perspective

� 2009 Blackwell Publishing Ltd/CNRS



structing the shape of the �true�, �untruncated� SID is not an

easy task (Green & Plotkin 2007), and estimating the

underlying parameters of truncated distributions is also

problematic (McGill 2003). Focusing on biomass or energy-

based GSADs may thus provide a more consistent and

more direct characterization of community structure than

individual-based distributions.

Linkages between GSADs

Linking the SID to other important macroecological

distributions is fundamental to the quest towards �unified�
theories that can explain many macroecological patterns in

concert (Hubbell 2001; McGill et al. 2007; Harte et al. 2008;

Storch et al. 2008). While it is well established that the SID is

linked to spatial biodiversity patterns (e.g. the species area

and distance–decay relationships) through aggregated sam-

pling (He & Legendre 2002; Plotkin & Muller-Landau 2002;

Morlon et al. 2008), we show here a series of linkages of a

different nature. Linkages between the SID and (non-

spatial) macroecological distributions (in particular the SBD

and SED) arise from relationships between body-size,

energy use and numerical abundance, and may be derived

using the formulas presented in Table 2. These results

reinforce the vision of the SID as �the master pattern�, from

which many others may be derived (McGill et al. 2007).

Our results suggest that the shape of GSADs is not

generally conserved when converting from one abundance

measure to an other, so that a theoretical prediction for one

abundance measure is not directly applicable to another. In

particular, theory relying on resource partitioning assump-

tions (e.g. MacArthur 1957, 1960; Sugihara 1980; Tokeshi

1990, 1999) will only directly predict the shape of SEDs. To

the extent to which abundance is related to body-size or

energy use, the conversion from one GSAD to another may

be approached using the general formulas presented in

Table 2. Such conversions can potentially extend the

breadth of current ecological theory from one to multiple

GSADs. From a practical standpoint, such conversions may

be used to assess the shape of GSADs that are difficult to

measure empirically. For example, our conversion frame-

work can be used for predicting SEDs, which are relevant to

resource-based models but often empirically intractable.

This conversion framework could also provide a tool for

estimating the classical SAD in systems where this is

currently challenging, for example in microbial systems.

The relationships between the variance and skewness of

GSADs depend on two major factors: which abundance

measure is considered to be an explanatory variable, and the

nature of the dependency between species� traits (e.g. body-

size) and abundance (Table 3 and Appendix S3). These

findings support and extend the pioneer work by Taper &

Marquet (1996) showing that the expected relationship

between the variance of GSADs depends on what the

authors called �models of causality�. We further suggest to

leverage this dependency to identify which of the models is

most consistent with empirical data. When data are available

simultaneously for different abundance measures in a given

system, we can indeed test the relative accuracy of

predictions derived under different scenarios (Fig. 3 and

Table 3).

When applying these analyses to our data, we find that the

predictions with better accuracy are given by a �N causal�
model, from which biomass is deduced from independent

pairing between species population size and body-size (i.e.

body-size has no net effect on the demography of species),

or a �M causal� model, from which numerical abundance is

deduced from directional pairing between species biomass

and body-size (i.e. body-size influences the ability of species

to accumulate biomass). Interestingly, while the �N causal�
model coupled with a dependency of population size on

species body-size is the first model one would think about

given Damuth�s rule (Damuth 1981), this model yields

particularly poor predictions (Fig. 3 bottom right panel; see

also Taper & Marquet 1996; their fig. 2a). This result is not

surprising given the weak dependence of population size on

body-size in our data (results not shown), and would

probably be different in communities showing a clear size–

density relationship (e.g. Schmid et al. 2000). Drawing

inference about causality from relationships between the

variance and skewness of distributions offers promising

avenues; however, further empirical and theoretical research

is needed to extend the approach, and to fully understand its

promise and limitations.

Future directions

We have described empirical patterns in the comparison

between GSADs, and theoretical approaches for under-

standing these patterns. These analyses constitute a

preliminary investigation in an area of research that clearly

needs further development.

Collecting data encompassing various abundance measures

Comparing distributions constructed from various abun-

dance measures can provide insights into pattern and

process in ecological communities. However, data sets

encompassing several measures are scarce, and those

containing direct information on resource use are almost

nonexistent. Future empirical work on SADs will greatly

beneficiate from simultaneously collecting measures of

numerical abundance, biomass and resource use.

Relaxing assumptions in the conversion framework

We based our conversion framework on the simplest

reasonable set of assumptions. We assumed that X is an
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explanatory variable for Y (or inversely), and that there exists a

functional relationship between X and Y. However, two

variables depending on one another do not necessarily do so

directly, as the dependence can also be driven by a third

variable influencing both of them simultaneously (Taper &

Marquet 1996). It is not clear how distinguishing between

direct causal pathways vs. joint dependence will change the

results, a question that will require future work.

We assumed that the deviation Z about the functional

relationship between two variables can be considered as

independent of the explanatory variable. In the case of

converting between numerical abundance and biomass, this

hypothesis is equivalent to assuming that the deviation

about the size–density relationship is independent of body-

size. This hypothesis is well supported in some data (e.g.

Schmid et al. 2000), but violated in others (e.g.Marquet et al.

1995).

We did not consider intraspecific variation in our

framework. Intraspecific variation in body-size is not

expected to have any effect on the conversion between

the SID and the SBD, as the relationship between the

biomass and numerical abundance of a species only involves

its average body-size (M ¼ N �m is exact, by definition of �m).

However, an exact conversion between the SID (or SBD)

and the SED will involve writing the average individual

energy use of a species as a function of its body-size

distribution (frequency distribution of individual body-sizes

within species).

Integrating sampling theory within the conversion framework

Recent theoretical developments based on sampling

theory have advanced our understanding of the spatial

scaling of the SID (Green & Plotkin 2007). It appears

that species biomass and energy distributions unveil at

different spatial scales than SID do (our Fig. 2; see also

Connolly et al. 2005). While this phenomenon has

potentially important theoretical and practical implications

(Connolly et al. 2005), it is not well understood. Coupling

a sampling framework with the conversion formulas

presented in this paper will likely allow for a better

understanding of the different spatial scaling perceived by

various GSADs.

Towards a mechanistic modelling of GSADs

Given the complexity of ecological processes, statistically

based approaches for modelling SADs receive a renewed

interest (e.g. Green & Plotkin 2007; Pueyo et al. 2007; Harte

et al. 2008). The theoretical part of this paper is purely

statistical. For example, it does not depend on whether

species are considered to be ecologically equivalent or

idiosyncratic, or whether they occupy similar or different

trophic levels or niches. We have shown, extending the

work of others (Taper & Marquet 1996), that even a purely

statistical conversion between GSADs does depend on

assumed �models of causality�. While this dependence may

be used to provide insights into ecological processes, more

robust tests of theories will necessitate a mechanistic

modelling of the SBD and SED along with that of the

SID (e.g. O�Dwyer et al. 2009).

Linking GSADs to other macroecological patterns

We focused in this paper on the relationships between

GSADs. However, the generality of the probability theory

we use offers broader perspectives for linking frequency

distributions in ecology. The allometries between numerical

abundance, body-size and metabolic rate allow linking

GSADs to two other macroecological patterns: the well-

known species size distribution (SsD; Hutchinson &

MacArthur 1959; Brown & Maurer 1989; Etienne & Olff

2004; Allen et al. 2006; Clauset & Erwin 2008), and the newly

introduced species individual energy distribution (SeD;

Appendix S3, Figs S1 and S2). Loehle (2006) noted previ-

ously that the SID and SsD are related to one another

through the size–density relationship. He showed that the

geometric SID can result from a uniform species-size

distribution and an exact power-law size–density relation-

ship. This result is easily reproduced using our framework

(with Y = N and X ¼ �m; Appendix S3), and the sensitivity

of this result to deviations from the exact power-law size–

density relationship could further be investigated using our

framework.

Realizing that the SID and SsD are linked raises the

question of which of the two patterns we should try to

find mechanisms or models for. Both the SID and SsD

have been the subject of much attention in the literature,

and many models have been developed to explain their

shape (Hutchinson & MacArthur 1959; Brown & Maurer

1989; Etienne & Olff 2004; Allen et al. 2006; Clauset &

Erwin 2008). However, the SID and SsD have been

studied in isolation. Applying the general formulas

provided in this paper with specific shapes for the

species individuals or size distributions will help bridge

this gap.

In an even broader context, frequency distributions are

not limited to the GSADs, SsD and SeD. Frequency

distributions of traits other than body-size and individual-

energy use are commonly used. Ecologists look at species

trait distributions (Reich et al. 2003), trait-trait allometries

(Wright et al. 2004) and abundance-traits relationships

McGill et al. (2006a,b). The mathematical framework we

use is relevant to linking any two GSADs, any GSAD to any

species trait distribution (given a mathematical link between

traits and abundance), or any two mathematically related

traits (Table 2; Stegen & White 2008). These relationships

add to the growing literature on integrating patterns in

ecology (Reuman et al. 2008).
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Taking species abundance distributions beyond

individuals: Appendix

Appendix S1: Detailed data sources and methods

Birds

We use data from the North American Breeding Bird Survey (BBS; Robbins et al., 1986; Sauer

et al., 2008), which consists of several thousand survey routes scattered across the continental

United States and southern Canada. Data are gathered by volunteer observers who identify and

count individuals of every bird species seen or heard at each of 50 stops along a 40 km route.

The BBS dataset thus allows for the observation of patterns at both the local scale (individual

survey routes) and continental scale (aggregating data across routes). We only use data from

the 1400 routes for which surveys were conducted every year over the 5-year period 2002-2006 in

order to minimize the chances of failing to detect rare species (McGill, 2003; Hurlbert and White,

2005, 2007). We exclude species not well-covered by BBS survey methodology (i.e., waterbirds,

raptors, nocturnal species) and focus on 349 species of terrestrial land birds. Since sampling effort

is constant across years and routes, we calculate density for each species in each route using the

sum of the counts over the 5 year period and at the continental scale using the sum of densities

per route. Mean species body-mass measurements are taken from the literature (Dunning, 1993),

and per-capita energy use is calculated using empirically derived field metabolic rates (FMR; Nagy

et al., 1999) for all bird species: e ≈ FMR ≈ 10.5m0.681.

1



2

Fish

Fish data were obtained from a stratified survey of all major drainages in Trinidad, which took

place between 1996 and 1998. Data come from seventy-six sites. The section of stream (average

length 50 m) sampled at each site is short enough to be fished thoroughly, yet long enough for all

species present to be represented in the catch. The sampling protocol includes major habitat types

present in the river at that point (e.g. pool and riffle). Electrofishing is employed where possible,

but is replaced by seining (mesh size 1.25 cm) when rivers are turbid. Large deep rivers are sampled

with gillnets and a trammel net. Guppies Poecilia reticulata and other small fish are collected with

dip nets. It is necessary to use a variety of methods to sample the range of habitats found in

Trinidad, and in all cases fishing continued until no further individuals were caught. This type of

removal sampling (Southwood and Henderson, 2000) is an effective way of sampling stream habitats,

and sampling effort can be considered consistent across sites. The total number of individuals is

recorded for each species at each site. Biomass is measured in the field at the time of fishing for

each species and represents the total wet weight of all individuals caught. Per-capita energy use is

calculated based on re-fitting data on resting metabolic rates Gillooly et al. (2001) using a multiple

regression on appropriately transformed data. This relationship accounts for variation in local

temperature as well as body size: e ≈ MR ≈ 31382 m0.75262 exp
(
− 0.4319

kT

)
where k is Boltzman’s

constant (8.6 10−5 eV K−1 ) and T is temperature measured in degrees Kelvin. Temperature

is calculated at each site from the average of three temperatures measurements recorded at the

beginning, middle, and end of sampling. The value chosen for temperature has no meaningful

effect on the local scale results because it is the same for every species within each local community.

Mammals

We use data from several small mammal communities from the Sevilleta LTER in New Mexico

(Ernest et al., 2000) and the Portal Project in Arizona (Brown, 1998; Ernest, in press) . These

studies include individual measurements of body mass and thus biomass can be directly calculated

by summation without relying on mean species values (contrary to the bird data). The Sevilleta

data comes from six sets of mark-recapture webs sampled continuously from 1994 to 1998 (Five
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Points Grass, Five Points Larrea, Goat Draw, Rio Salado Grass, Rio Salado Larrea and Two 22).

Data is summed over the three days within each census, the two annual censuses, and over the five

year period. Recaptures within a single census are excluded. We use data from the control plots

of the Portal Project (see Brown 1998 for details of the study) and sum the values of numerical

abundance and biomass over the 12 monthly censuses and the five years from 1994-1998. As all

sites are located in the desert southwest, per-capita energy use for both studies is calculated from

the allometry reported in Nagy et al. (1999) relating field metabolic rate (FMR) and mass for

desert mammals: e ≈ FMR ≈ 3.18m0.785.

Trees

We use data on trees from the Center for Tropical Forest Studies network (http: //www.ctfs.si.edu).

Within a 50-ha plot in Barro Colorado Island in central Panama, spatial location, species identity

and diameter at breast height (d) are reported for every stem > 1cm (Condit, 1998; Hubbell et al.,

1999, 2005). To estimate individual aboveground mass we use the empirical interspecific allometry

m = 0.124 d2.53 relating individual mass (m) to diameter at breast height (Brown, 1997); we then

sum the individual tree masses to obtain an estimate of biomass. More accurate species-specific

allometries incorporating wood density are available for BCI (Chave et al., 2003), but the allometry

we use provides a first good approximation close to a theoretical prediction m ∝ d
8
3 (West et al.,

1997). The energetics of trees sensu stricto is not well characterized, but it has been proposed

that surrogates such as biomass production, water consumption or respiration rates scale as m
3
4

West et al. (1997) (thus d2) and foresters have traditionally assumed that total basal area is a

decent measure of total production or resource use. To estimate per-capita energy use, we use the

relationship derived by refitting the data from Gillooly et al. (2001) using a multiple regression

on appropriately transformed data: e ≈ respiration ≈ exp (16.949) m0.692 exp
(
− 0.642

kT

)
, where k

is Boltzman’s constant (8.6 ∗ 10−5 eV K−1 ) and T is temperature measured in degrees Kelvin.

Temperature is calculated as the mean annual temperature (average within days, then within

months and then the whole year) averaged over the last 5 years. The value chosen for temperature

has in practice no effect on our results since it is the same for every species. The data available
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for estimating the allometric relationship of energy use by plants is based on seedlings and plant

parts Gillooly et al. (2001), and is thus necessarily a rough estimation. In addition, photosynthesis

is strongly dependent on light availability, and light availability is highly dependent on size in

tropical forest: small trees in the shaded understory are likely not at their maximum metabolic

rate (Muller-landau 2006a,b). As this is the best data available, we use it to get a reasonable

though coarse characterization of the energy use of tree species.

Appendix S2: Detailed empirical results

We focus here in testing the equivalence of GSADs when communities are considered as a whole (see

Zar, 1999; Sokal and Rohlf, 2000; Cojbasic and Tomovic, 2007 for parametric and non-parametric

approaches to comparing individual-level communities).

Variance

The bird data consist of 1400 local communities. Individuals are distributed with more equitability

than biomass in all local communities but 5 (99.6% of the communities, p < 0.05 -run test-),

with a 95% confidence interval for the factor of deviation (V ar[log(M)]
V ar[log(N)] ) of [1.64; 1.67]. Individuals

are distributed with more equitability than energy use in all local communities but 15 (98.9%,

p < 0.05), with a 95% confidence interval for the factor of deviation ( V ar[log(E)]
V ar[log(N)] ) of [1.32; 1.34].

Energy use is more equitably distributed than biomass in all local communities (p < 0.05), with

a 95% confidence interval for the factor of deviation (V ar[log(M)]
V ar[log(E)] ) of [1.23; 1.24]. The fish data

consist of 76 local communities. Individuals are distributed with more equitability than biomass

in 55 of these 76 local communities (72.3%, p < 0.05; 95% confidence interval for the factor of

deviation: [1.9; 5.0]), and with more equitability than energy use in 43 of them (56.6%, n.s; 95%

confidence interval for the factor of deviation: [0.90; 1.01]). Energy use is more equitably distributed

than biomass in 59 of the 76 local communities (77.6%, p < 0.05; 95% confidence interval for the

factor of deviation: [0.95; 6.25]). The mammal data consist of 7 local communities. Individuals are

distributed with more equitability than biomass in all of them (100%, p < 0.05; 95% confidence
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interval for the factor of deviation: [1.10; 1.44]) and with more equitability than energy use in

all local communities but 1 (100%, p < 0.05; 95% confidence interval for the factor of deviation:

[1.03; 1.26]). Energy use is more equitably distributed than biomass in all local communities (100%,

p < 0.05; 95% confidence interval for the factor of deviation: [1.06; 1.15]). The tree data consist of

50 local communities. Individuals are distributed with more equitability than biomass and energy

use in all of them (100%, p < 0.05; 95% confidence intervals for the factors of deviation: [3.77; 4.03]

and [2.10; 2.23] respectively). Energy use is more equitably distributed than biomass in all local

communities (100%, p < 0.05; 95% confidence interval for the factor of deviation: [1.78; 1.81]).

Taken together, these results demonstrate the non-equivalence of the variance of GSADs when

communities are considered as a whole.

Skewness

Local bird communities are more often characterized by a left-skewed SID (814 out of 1400, 58%,

p < 0.05), but right-skewed SBDs and SEDs (75% and 59% of the local communities respectively,

p < 0.05). Local fish communities are characterized by mostly right-skewed SIDs (48 out of 76,

63%, p < 0.05) and slightly more right-skewed SEDs ( 54%, n.s.), but slightly more left-skewed

SBDs (55%, n.s.). Five out of the seven local mammal communities show a positive skew for the

SID, the SBD and the SED, while the two other local communities show a negative skew for the

three distributions (n.s.). All the local 1 ha local tree plots show a positively-skewed SID, and all

of them a negatively-skewed SBD (in the exception of 2 plots) and SED (p < 0.05).

Appendix S3: Detailed derivations

General conversion formula

Macroecological distributions are all interrelated by conditional probabilities (or probability den-

sities; e.g. Figure S1). The conversion between the frequency distribution SX and the frequency
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distribution SY is given by the general formula:

SY (Y ) =
ˆ
P (Y |X)SX (X) dX (1)

With

Y = f(X) + ε

where f is a general allometry and the error ε is independent of X and centered (E (ε) = 0),

P (Y |X) reads:

P (Y |X) = P (f (X) + ε|X) = P (ε|X) = Pε (ε) = Pε (Y − f (X))

Combining with 1, the conversion from X to Y is given by the general formula:

SY (Y ) =
ˆ
Pε (Y − f (X))SX (X) dX (2)

Specific conversion formulas (Table 2)

• General allometry, no error

When there is no error around an allometric relationship f , Pε may be written as a Dirac delta

function:

Pε (Y − f (X)) = δ (Y − f (X))

For any monotic function g with root xi:

δ (g (x)) =
δ (x− xi)
|g′ (xi)|



7

where the prime denotes the derivative. We thus have (for f ′ (X) 6= 0):

δ (Y − f (X)) =
δ
(
X − f−1 (Y )

)
|f ′ (X)|

Therefore, (2) becomes

SY (Y ) =
SX
(
f−1 (Y )

)
|f ′ (f−1 (Y ))|

(3)

• Power-law allometry, no error

Substituting in 3, for a power-law allometry f : x→ log (c) + ax without error:

SY (Y ) =
1
|a|
SX

(
1
a

(Y − log (c))
)

(4)

• General allometry, normally distributed error

Substituting in 2, for a normally distributed error Pε(x) = 1
σ
√

2π
exp−

x2

2σ2 and a general allometric

relationship f :

SY (Y ) =
ˆ

1
σ
√

2π
exp−

(Y−f(X))2

2σ2 SX (X) dX (5)

• Power-law allometry, normally distributed error

Substituting in 5, for a normally distributed error and power-law allometry:

SY (Y ) =
ˆ

1
σ
√

2π
exp−

(Y−log(c)−aX)2

2σ2 SX (X) dX (6)

The geometric SID results from the uniform SsD (case power-law allometry

with no error)

It has been show Loehle (2006) that the geometric SID results from the uniform SsD when an exact

power-law allometry is assumed. This result is easily reproducibe using our framework. Assume
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that the size distribution is uniform on a log scale, i.e:

Ss (log (m)) = 1
log(mmax)−log(mmin) if mmin ≤ m ≤ mmax

= 0 otherwise

substituting in 4 leads (with aN |m ≤ 0)

SN (log (N)) = 1
|a|(log(mmax)−log(mmin)) if cm

aN|m
max ≤ N ≤ cm

aN|m
min

= 0 otherwise

i.e. the species abundance distribution is also uniform on a log-scale. Note that the geometric rank

abundance curve is equivalent to the uniform distribution on a log scale, and we therefore reproduce

the results by Loehle (2006). The advantage of our framework is that it offers the possibility to

extend such predictions to biologically more realistic cases, in particular incorporating the effect of

variation around the size-density relationship.

Variance-variance relationships depend on the choice of “causal model”

There are two ways to describe the functional relationships between X and Y : 1) Y is functionally

determined by X. For example, the biomass of a population may be largely a consequence of

how numerous the population is if processes act primarily to determine the number of individuals

in a population (e.g. processes of birth, death, speciation and migration) 2) X is functionally

determined by Y . For example the density of a population may be largely a consequence of its’

biomass if processes act primarily to determine population biomass (e.g. growth versus reproduction

response in indeterminate growers such as trees). These two different ways to write the functional

relationship between X and Y lead to two different relationships between the variance of X and Y

(Taper and Marquet, 1996).

In the first case (Y functionally determined by X),

Y = log
(
cY |X

)
+ aY |XX + ZY |X (7)
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with ZY |X independent of X. In this case,

V ar [Y ] = a2
Y |XV ar [X] + V ar

[
ZY |X

]
(8)

In the second case (X functionally determined by Y )

X = log
(
cX|Y

)
+

1
aY |X

Y + ZX|Y (9)

with ZX|Y independent of Y . In this case, V ar [X] = 1
a2
Y |X

V ar [Y ] + V ar
[
ZX|Y

]
and

V ar [Y ] = a2
Y |XV ar [X]− a2

Y |XV ar
[
ZX|Y

]
(10)

Equations 8 and 10 show that the relationship between the variance of two macroecological

distributions SX and SY depends on the steepness of the allometric relationship between X and

Y and on the model of functional relationship between X and Y . Equations 8 and 10 may be

used to understand most relevant “causal models” in natural communities. Indeed, variance values

and allometric exponents can be measured from field data, which can then be used to infer the

sign of V ar [Y ] − a2
Y |XV ar [X]. Given that V ar

[
ZY |X

]
is positive, Equation 8 is satisfied if the

sign of V ar [Y ] − a2
Y |XV ar [X] is positive, indicating a “X causal” model. If instead the sign of

V ar [Y ]− a2
Y |XV ar [X] is negative, Equation 10 is satisfied, indicating a “Y causal” model.

Converting the skewness of macroecological distributions

We write

Y = log
(
cY |X

)
+ aY |XX + ZY |X (11)

with ZY |X independent of X. Assume that ZY |X is centered (E
[
ZY |X

]
= 0). The expected value

of Y reads:

E[Y ] = E[log
(
cY |X

)
+aY |XX+ZY |X ] = log

(
cY |X

)
+aY |XE [X]+E

[
ZY |X

]
= log

(
cY |X

)
+aY |XE [X]
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The variance of Y reads:

V ar [Y ] = a2
Y |XV ar [X] + V ar

[
ZY |X

]
The skewness of Y is defined by:

γ1 =
E[(Y − E[Y ])3]

(E[(Y − E[Y ])2])
3
2

=
E[(Y − E[Y ])3]

V [Y ]
3
2

E[(Y−E[Y ])3] = E

[(
aY |X (X − E [X]) + ZY |X

)3]
= E

[
a
3
Y |X (X − E [X])3 + Z

3
Y |X + 3a2

Y |X (X − E [X])2 ZY |X + 3Z2
Y |XaY |X (X − E [X])

]
ZY |X and X are independent, so that:

E
[
3a2
Y |X (X − E [X])2 ZY |X

]
= 3a2

Y |XE
[
ZY |X

]
E
[
(X − E [X])2

]
= 0

E
[
3Z2

Y |XaY |X (X − E [X])
]

= 3aY |XE
[
Z2
Y |X

]
E [(X − E [X])] = 0

Finally

E[(Y − E[Y ])3] = E
[
a3
Y |X (X − E (X))3

]
= a3

Y |XE
[
(X − E (X))3

]
+ E

[
ZY |X

]3
Thus the skewness becomes

γ1 =
a3
Y |XE[(X − E[X])3] + E

[
ZY |X

]3
(a2
Y |XV ar[X] + V ar

[
ZY |X

]
)

3
2

This expression shows that Y can be skewed even if X is not, if ZY |X is skewed. In the case of

unskewed ZY |X :

γ1 =
a3E[(X − E[X])3]

(a2V ar[X] + V ar
[
ZY |X

]
)

3
2

This formula shows that if X explains Y with a given unexplained variance, the absolute value
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of the skewness of Y is always smaller than the absolute value of the skewness of X. This formula

also shows that the sign of the skewness of Y is opposite to that of X for a ≤ 0. In particular,

with aM |N = 1 + 1
aN|m

, N and M are expected to have opposite skew for 1 + 1
aN|m

< 0 , or

equivalently 0 > aN |m > −1. With aE|N = 1 + ae|m
aN|m

, N and E are expected to have opposite

skew for 1 + ae|m
aN|m

< 0 , or equivalently 0 > aN |m > −ae|m. With typical values reported for

the exponent of the size-density relationship, the direction of the skewness is expected to switch

between abundance measures. Under the assumption of unskewed error around allometric scaling

laws, species individuals and biomass distributions are expected to have opposite skew as soon as

the slope of the size-density relationship is shallower than −1, as is usually the case in natural

communities. Also, species individuals and energy distributions are expected to have opposite skew

as soon as the slope of the size-density relationship is shallower than the slope of the size-energy

relationship, which is the case in our data and is also supported by others (Brown and Maurer,

1986).

Specific variance-variance relationships (Table 3)

We derive the variance-variance relationship between numerical abundance (N) and biomass (M)

under the four simplified scenarios presented in section Illustration and Empirical Evaluation (Table

3). The biomass of a species is directly given by M = Nm , where m is the average body-size of

the species’ population. We thus have: log (M) = log (N) + log (m).

First scenario: M is the explanatory variable; we write log (N) = log (M)− log (m).

In the first case, the body-size of species has no effect on their ability to accumulate biomass.

In other words, M is independent of m. We find:

V ar [logN ] = V ar [logM ] + V ar [logm]

In the second case, we assume a power-law dependency of M on m (exponent aM |m), so that

log (N) = (1− 1
aM|m

) log (M) + ZN |M with ZN |M independent of M . We find:



12

V ar [logN ] =
(

1− 1
aM |m

)2

V ar [logM ] + V ar
[
ZN |M

]
Second scenario: N is the explanatory variable; we write log (M) = log (N) + log (m).

In the first case, the body-size of species has no effect on numerical abundance. In other words,

N is independent of m. We find:

V ar [logM ] = V ar [logN ] + V ar [logm]

In the second case, we assume a power-law dependency of N on m (exponent aN |m), so that

log (M) = (1 + 1
aN|m

) log (N) + ZM |N with ZM |N independent of N . We find:

V ar [logM ] =
(

1 +
1

aN |m

)2

V ar [logN ] + V ar
[
ZM |N

]

Appendix S4: Equitability in the distribution of individuals, biomass and

energy

Assuming that the relationships between both N and m and e and m are power-law, we denote

cN |m and aN |m the normalization constant and power-law exponent of the allometry between m

and N . Writing E = Ne and M = Nm, it is obvious that the relationship between any 2 of

the 5 variables N, m, e, M and E is also power-law. Notations for the allometries between any

two other variables are denoted accordingly. For example if N ∼ maN|m , then m ∼ N
1

aN|m , so

that M ∼ N

(
1+ 1

aN|m

)
and aM |N = 1 + 1

aN|m
. If furthermore we neglect intraspecific body-size

variation (reasonable assumption in the case for determinant growers such as birds and mammals),

we can write e ∼ mae|m , so that E ∼ N

(
N

1
aN|m

)ae|m
∼ N

1+
ae|m
aN|m and aE|N = 1 + ae|m

aN|m
. For

example with Damuth (aN |m = −0.75) and Kleiber’s (ae|m = 0.75) coefficients: aM |N = −0.33 and

aE|N = 0 (the energy equivalence rule).

Using the formulas presented in the manuscript (section 2), it is straightforward to derive
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the relationships between the variance in number of individuals, biomass and energy use. These

formulas depend on assumptions regarding which variable is explanatory vs. explained. Figure S3a

illustrates the conditions under which biomass is expected to be more equitably distributed than

individuals, and Figure S3b the conditions under which energy is expected to be more equitably

distributed than individuals.

Captions

• Figure S1: General link between diversity distributions

We denote probabilities (or probability densities) associated with species level conversions (blue

shade, conversion between species individual, biomass and energy distributions) by upper case

symbols (P ), and probabilities associated with per capita level conversions (yellow shade, conver-

sion between species individual, size and per capita energy distributions) by lower case symbols (p).

Conversions between population level distributions naturally stem from per capita level probabili-

ties (in particular p (N |m) describing the relationship between density and body-size, and p(e|m)

describing the relationship between metabolic rate and body-size). Equations in the figure provide

the relationships between probabilities at the population and per capita level.

• Figure S2: Macroecological space for a hypothetical ecological community

This figure illustrates how the “classical” species abundance distribution (constructed from individ-

ual counts, SID) relates to species biomass (SBD) and energy (SED) distributions (a), but also to

the species size (SsD) and individual energy use (SeD) distributions (b). Each point represents a

species in a hypothetical community. The data are generated assuming: 1) a log-series species indi-

vidual distribution with parameter 0.9 2) a power-law allometry between the number of individuals

and size with exponent − 3
4 (Damuth’s exponent) and normally distributed error with variance 0.5

2) a power-law allometry between individual mass and individual metabolic rate with exponent 3
4

(Kleiber’s exponent) and normally distributed error (variance 0.5); all individuals within a species

are assumed of the same size, so that m = m and e = e. The gray shadows in the figure are
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projections of the species on the 2-dimensional surfaces, showing allometric relationships between

any two variables. For example, the projection on the log (N) − log (m) plane (panel b) is the

size-density relationship, and the projection on the log (e) − log (m) plane is the size-energy rela-

tionship. The red dots are projections of the dataset on the 1-dimensional axes. The density of

these dots constitutes the macroecological distributions (SID, SBD, SED, SsD and SeD), shown in

inserts in their familiar histogram form. The energetic equivalence rule resulting from the choice of

the exponents (same steepness for the size-density and size-energy relationships) is illustrated by

the projection on the log (E)− log (N) surface (panel a): E does not depend on N . Note that the

right-skewed log-series SID corresponds to a left-skewed SsD (panel b).

• Figure S3: Conceptual figure illustrating the effect of allometric slopes, error and causality

on the relationships between: a) the equitability of individuals and biomass division b) the

equitability of individuals and resource division

If the error around allometries is ignored (plain lines), whether biomass (or energy) is more equitably

distributed than the number of individuals depends on the slope of the size-density relationship

(or the ratio of the slopes of the size-density and size-energy relationships, respectively). With

Damuth exponent for the size-density relationship (-0.75), biomass is expected to be more equitably

distributed than the number of individuals. With Kleiber’s exponent for the size-energy relationship

(0.75), energy is expected to be more equitably distributed than the number of individuals for a size-

density relationship steeper than -0.375. Incorporating the effect of scatter around the allometries

significantly change the results. The relationships between evenness depend on the direction of

causality (short-dashed lines versus dashed-point lines).
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