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1  | INTRODUC TION

Microbiota – host‐associated microbial communities – play a major 
role in the functioning of multicellular organisms (Hacquard et al., 
2015). For example, the gut microbiota plays a significant nutritional 
role for animals by synthesizing essential nutrients and by helping 
digestion and detoxification (McFall‐Ngai et al., 2013). It is also in‐
volved in a broad range of other mutualistic functions important for 
host protection, development, behaviour and reproduction (Zilber‐
Rosenberg & Rosenberg, 2008). Other less‐studied microbiota, such 

as those found on animal skins or plant roots, also play major eco‐
logical roles (Philippot, Raaijmakers, Lemanceau, & van der Putten, 
2013).

Host–microbiota associations have evolved for thousand million 
years with three major modes of inheritance across phylogenetic 
host lineages: (a) strict vertical transmission within a host lineage 
(Rosenberg & Zilber‐Rosenberg, 2016), which can happen either 
by transmission from mother to child (e.g. directly through ovaries 
during reproduction or at birth), or by social contact while sharing 
life with related individuals (Bright & Bulgheresi, 2010), (b) vertical 
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Abstract
Microbiota play a central role in the functioning of multicellular life, yet understand‐
ing their inheritance during host evolutionary history remains an important challenge. 
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of the host (i.e. environmental acquisition), transmitted across generations with a 
faithful association with their hosts (i.e. strict vertical transmission), or transmitted 
with occasional host switches (i.e. vertical transmission with horizontal switches). 
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of both host and symbiont phylogenies, and are therefore often not well adapted to 
DNA metabarcoding microbial data. Here, we develop a model‐based framework for 
identifying vertically transmitted microbial taxa. We consider a model for the evolu‐
tion of microbial sequences on a fixed host phylogeny that includes vertical transmis‐
sion and horizontal host switches. This model allows estimating the number of host 
switches and testing for strict vertical transmission and independent evolution. We 
test our approach using simulations. Finally, we illustrate our framework on gut mi‐
crobiota high‐throughput sequencing data of the family Hominidae and identify sev‐
eral microbial taxonomic units, including fibrolytic bacteria involved in carbohydrate 
digestion, that tend to be vertically transmitted.
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transmission with occasional horizontal switches between host lin‐
eages (Henry et al., 2013), which can for example happen through di‐
rect interactions, via vectors or via shared habitats (Engel & Moran, 
2013), and (c) environmental acquisition, with microbes coming from 
the environment independently from other related hosts (Bright 
& Bulgheresi, 2010). The vertical transmission of a given microbial 
lineage within host lineages can lead to cophylogenetic patterns, 
with the microbial phylogeny mirroring the host phylogeny (e.g. 
Helicobacter pylori in humans; Linz et al., 2007). Horizontal switches 
and environmental acquisitions can play key roles in adaptation, for 
example, by allowing host lineages to adapt to new feeding regimes 
(McKenney, Maslanka, Rodrigo, & Yoder, 2018; Muegge et al., 2011). 
They will tend to erase cophylogenetic patterns linked to vertical 
transmission. The relative importance of each of the three modes of 
inheritance depends on the type of host and the type of microbes. 
For example, vertical transmission is thought to be far more prepon‐
derant in the ‘core’ microbial species, which are shared across hosts 
regardless of environmental conditions, than in the ‘flexible’ micro‐
bial species, facultative and dependent on internal and external con‐
ditions (Shapira, 2016).

Quantifying the relative importance of different modes of in‐
heritance during host–microbiota co‐evolution remains a major 
challenge. Patterns of ‘phylosymbiosis’, that is a pattern of concor‐
dance between a given host phylogeny and the dendrogram reflect‐
ing the similarity of microbial communities across these hosts, are 
frequently observed (Bordenstein & Theis, 2015), for example, for 
great apes gut microbiota (Ochman et al., 2010). Although these 
phylosymbiotic patterns suggest that some microbial species within 
the microbiota are vertically transmitted, such community‐wide 
comparisons of microbiota across hosts do not allow identifying 
which microbial species are vertically transmitted, nor quantifying 
the relative importance of the different modes of inheritance across 
distinct microbial species. More recently, approaches have been de‐
veloped to apply cophylogenetic concepts to microbial taxa (Bailly‐
Bechet et al., 2017; Groussin et al., 2017). Cophylogenetic methods 
were originally developed to study the co‐evolution between hosts 
and their symbionts, with the underlying idea that close and long‐
term associations lead to congruent phylogenies with similar topol‐
ogies and divergence times (Page & Charleston, 1998; de Vienne 
et al., 2013), while processes such as host switches disrupt this 
congruence. Cophylogenetic tools either quantify the congruence 
between symbiont and host trees using distance‐based methods – 
for example ParaFit (Legendre, Desdevises, & Bazin, 2002), general‐
izations of the Mantel test (Hommola, Smith, Qiu, & Gilks, 2009), or 
PACo (Balbuena, Míguez‐Lozano, & Blasco‐Costa, 2013) – or try to 
find the most parsimonious sets of events (e.g. host switches) that 
allow reconciling both trees (e.g. TreeMap or Jane; Conow, Fielder, 
Ovadia, & Libeskind‐Hadas, 2010). In the context of microbiota, 
Groussin et al. (2017) and Bailly‐Bechet et al. (2017) have used the 
ALE program (Szöllõsi, Rosikiewicz, Boussau, Tannier, & Daubin, 
2013; Szöllosi, Tannier, Lartillot, & Daubin, 2013), which was initially 
designed to solve the gene tree–species tree reconciliation prob‐
lem. Importantly, all these methods require first a reconstruction 

of the microbial tree for each individual microbial taxon. However, 
microbiota data are typically generated using next‐generation se‐
quencing (NGS) metabarcoding techniques, providing short nucleo‐
tidic reads of a targeted slow‐evolving universal gene (e.g. the 16S 
rRNA gene). Such data often contain limited variability within each 
microbial taxon, which can be problematic for reconstructing their 
tree.

Here, we develop a probabilistic model of host–symbiont evo‐
lution, which aims at studying modes of inheritance in the microbi‐
ota without building first microbial phylogenies. The main idea is to 
use the host phylogenetic tree to inform the microbial trees, which 
reduces the problem of low phylogenetic resolution of metabarcod‐
ing microbial markers. Huelsenbeck, Rannala, and Larget (2000) de‐
veloped a model of cospeciation and host switches similar to ours, 
focused on host–parasite associations. However, the authors devel‐
oped an inference framework reconstructing host and parasite phy‐
logenetic trees jointly, which is not well adapted to the case when 
the host phylogenetic tree is robust and the symbionts are repre‐
sented by a sequence alignment with limited phylogenetic informa‐
tion. Here, we fix the host phylogeny and follow the evolution of 
individual microbial taxa on the host tree. We compute likelihoods 
associated with microbial sequence alignments under a model in‐
cluding vertical inheritance and host switches. We find estimates of 
the number of host switches and develop tests for evaluating model 
support in comparison with scenarios of independent evolution and 
strict vertical transmission. We test our approach using simulations 
and apply it to gut microbiota high‐throughput sequencing data of 
the family Hominidae.

2  | MATERIAL S AND METHODS

2.1 | HOME: A general framework for studying 
host–microbiota evolution

2.1.1 | From metabarcoding microbiota data to 
separate alignments

Given a host species tree and metabarcoding microbiota data sam‐
pled from each host species (e.g. sequences from the 16S rRNA 
gene, ITS or any other DNA metabarcoding marker), our frame‐
work begins by clustering sequences into operational taxonomic 
units (OTUs) using bioinformatics pipelines. Each OTU is made of 
distinct microbial populations, each corresponding to a specific host 
species (Figure 1a). We assume as a starting point that there is no 
within‐host genetic variability (we discuss later how we relaxed this 
assumption), such that each microbial population is represented by 
a unique sequence. In our analysis of these data, for each OTU and 
each host, we use the most abundant microbial sequence as the rep‐
resentative sequence. The data we consider thus consist of a series 
of microbial alignments A, each corresponding to a sequence align‐
ment for a specific OTU; a given alignment is composed of N‐nucleo‐
tidic sites long sequences (with potential gaps considered as missing 
data), each corresponding to a specific host. In each alignment, we 
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distinguish the segregating sites (i.e. those that vary in at least one 
sequence) to those that do not vary across sequences. Some mi‐
crobial OTUs may not be represented in all host species (i.e. there 
might be missing sequences in the alignment), which can either be 
true absences (i.e. the corresponding host species do not host the 
OTU), or a lack of detection (i.e. the OTU is present but has not been 
sampled in these host species). Because we cannot distinguish these 
two possibilities, we simply treat missing sequences as missing data; 
we do not explicitly model the extinction of symbiotic populations in 
certain host species, nor the microbial sampling process. We apply 
our model separately to each alignment.

2.1.2 | Modelling the evolution of an OTU on a 
host phylogeny

We consider the evolution of a given microbial OTU on a host phy‐
logeny T (Figure 1); T is assumed to be a known, ultrametric, rooted 
and binary n‐tips tree. The model is defined as follows:

(1) Vertical transmission: From an ancestral microbial popula‐
tion at the root of the host phylogeny represented by a N‐nucleo‐
tidic sites long sequence with Nv ‘variable’ sites (i.e. those that can 
experience substitutions), substitutions occur along host branches. 
Following classical models of molecular evolution (Strimmer & von 
Haeseler, 2009), we assume that each variable site evolves inde‐
pendently from the others according to a substitution model with 
a rate μ that is supposed to be the same for all variable sites and 
constant along the evolutionary branches (strict‐clock model). The 

substitution model is represented by a continuous‐time reversible 
Markov process, characterized by an invariant measure π (i.e. the 
vector of base frequencies at equilibrium) and an instantaneous 
transition rate matrix Q between different states (Strimmer & von 
Haeseler, 2009).

At a host speciation event, the two daughter host lineages inherit 
the microbial sequence from the ancestral host, after which micro‐
bial populations on distinct host lineages evolve independently.

(2) Host switches: A discrete number (ξ) of host switches hap‐
pen during the evolution of the OTU on the host tree. The switches 
occur from a ‘donor’ branch, with a probability proportional to its 
branch length, and at a time uniformly distributed on the branch, 
to a ‘receiving’ branch, with equiprobability among the co‐existing 
branches (we do not consider the phylogenetic proximity from the 
donor branch). When a host‐switch happens, for convenience we 
assume that the microbial sequence from the donor host replaces 
that of the receiving host and the microbial sequence from the donor 
host remains unchanged.

Each series of host switches on T defines a tree of microbial 
populations TB that summarizes which populations descended from 
which ones and when their divergences occurred (Figure 1). In the 
absence of host switches (ξ = 0), TB and T are identical. When host 
switches occur, they break the congruence between TB and T (e.g. 
Figure 1c). Hence, the model can be decomposed in two steps: first, 
host switches generate TB from T; second, a sequence (representing 
a microbial population) evolves on TB with a constant substitution 
rate.

F I G U R E  1   Illustration of the various steps for assessing microbial modes of inheritance in host–microbiota evolution from metabarcoding 
data. (a) The first step consists in clustering the microbial sequences into OTUs and building for each OTU the corresponding alignment of 
segregating sites (AS). (b, c) The second step consists in fitting different models of inheritance to each microbial alignment. We compute the 
probability of the microbial alignment on hypothetical microbial trees. Under a model with strict vertical transmission (ξ = 0, b), the microbial 
is the same as the host tree; under a model with vertical transmission and host switches (ξ > 0, c), microbial trees are simulated from the host 
tree with various numbers of switches ξ. We find the substitution rate 𝜇̂ and the number of switches 𝜉 that maximize the probability of the 
alignment.

(a)

(b) (c)
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2.1.3 | Likelihood computation and inference

We develop a likelihood‐based framework in order to fit the above 
model to data comprising a given (fixed) tree T of hosts and an align‐
ment AS of microbial sequences characterizing populations of a given 
microbial OTU for these hosts (here the alignment AS is reduced to the 
segregating sites). This will allow estimating the number of switches 
𝜉 on the host tree. The probability of the alignment assuming that the 
substitution rate is μ and that there are ξ switches is given by:

where L
(
AS|�,TB

)
 is the probability of the alignment assuming that 

the substitution rate is μ and the (dated) microbial tree is TB, and 
the integral is taken over the space of dated trees obtained with ξ 
switches on T. In practice, we compute this integral using Monte 
Carlo simulations: we simulate a large number (S) of dated microbial 
trees obtained with ξ switches on T (see next section), compute for 
each TB the probability of the alignment assuming that the substitu‐
tion rate is μ, and sum these probabilities:

This approximate expression converges to the exact integral 
form when S is large.

We compute the probability L
(
AS|�,TB

)
 of the sequence align‐

ment AS on a given dated microbial tree TB using the Felsenstein 
pruning algorithm (Felsenstein, 1981). We take into account the pos‐
sibility of gaps in the microbial alignment, considering them as ‘miss‐
ing values’ by pruning off the tips of the tree with a gap (Truszkowski 
& Goldman, 2016). First, we choose the model of DNA substitution 
between the K80, F81 and HKY matrices from the alignment re‐
duced to segregating site (AS) using the function modelTest (r pack‐
age phangorn) and based on a BIC selection criterion: this function 
estimates Q and π directly from AS, where Q, the reversible transi‐
tion rate matrix, depends on the invariant measure π. We also obtain 
estimates of the transition/transversion rate ratio κ (K80 and HKY) 
and of the base frequencies at equilibrium π (F81 and HKY) from 
these models. Second, we compute the probability of the alignment 
at each nucleotidic site ν using the pruning algorithm. For a given 
segregating site among AS, let P(t) be the vector of probabilities of 
states A, C, G and T at time t. P(t) is given by P (t)=M (t) ∗P

(
0
)
 where 

P
(
0
)
=
(
1A,1C,1G,1T

)
 with 1A equals 1 if A is the initial nucleotide is A 

and 0 otherwise, and M (t)=et�Q. Let Pv (s) be the probability of the 
alignment corresponding to the clade descending from node s in the 
phylogeny for site ν. We have:

Where s1 and s2 are the two nodes descending from s and t1 and 
t2 are their respective times of divergence (t1 and t2 are fixed, given 

by the branch lengths of the simulated dated tree TB). We iterate 
this pruning calculation from the leaves to the root of the tree, and 
obtain the probability of the alignment at site ν:

Because we consider only segregating sites, we condition this 
probability on the occurrence of at least one substitution. The prob‐
ability of a substitution happening on a tree TB of total branch length 
B is given by 

(
1−e−�B

)
. Finally, the probability of the alignment AS is 

obtained by multiplying the probabilities corresponding to each site. 
Hence, the probability of the variable alignment AS is given by:

where Ns is the number of segregating sites.
In practice, we used S = 104 and plotted the resulting value of 

L
(
AS|�,�

)
 with an increasing number of trees TB to ensure that S was 

large enough to obtain a reliable approximation of the likelihood. For 
each ξ, we find μ that maximizes L

(
AS|�,�

)
. Finally, we repeat these 

analyses for a range of realistic ξ values (typically ξ = [0, 1, 2,…, 2n]) 
and deduce the couple of parameters 𝜉 and 𝜇̂ that maximizes the 
probability of the alignment. Likelihood landscapes typically have a 
well‐defined peak (Figure S1), suggesting that ξ and � are identifi‐
able. We also show later that we can properly estimate them under 
a wide set of scenarios. Low 𝜉 values are indicative of OTUs that are 
transmitted mostly vertically, while high 𝜉 values are indicative of 
those that perform frequent host switches.

2.1.4 | Simulations of host switches: from T to TB

By simulating ξ switches on T, we obtain a (dated) bacterial TB charac‐
terized by its topology and its branch lengths. Each switch is charac‐
terized by its ‘donor’ branch, by its position on the branch, and by its 
‘receiving’ branch. The donor branch is chosen with a probability pro‐
portional to its branch length, the time of the switch is drawn uniformly 
on the branch, and the receiving branch is chosen with equiprobability 
among the lineages alive at time t. A switch replaces the existing mi‐
crobial sequence in the receiving host and creates a new branching 
event in the microbial tree TB. Four types of switches can occur, and 
each of them results in different rules to obtain TB from T (Figure 2):

1.	 The switch occurs just after the root on the host tree, before 
any other speciation event: TB is obtained from T by re‐dating 
the root of the tree to the time of the host‐switch. This switch 
does not change the topology of the tree (i.e. it only affects 
the branch lengths).

2.	 The switch occurs from an internal branch to a branch directly 
related to the root, that is one of the sequences originating at root 
no longer has descendants in the current sequences: TB is ob‐
tained from T by re‐rooting the tree to the most recent common 

(1)L
(
AS|�,�

)
= ∫

TB

L
(
AS|�,TB

)
dTB

(2)L
(
AS|�,�

)
∼
1

S

∑

TB

L(AS|�,TB)

(3)Pv (leaf)=
(
1A,1C,1G,1T

)
andPv (s)=

(
M

(
t1
)
Pv

(
s1
))

⋅

(
M

(
t2
)
Pv

(
s2
))

(4)Lv=�Pv (root)

(5)L
(
AS|�,TB

)
=

(
1−e−�B

)−Ns

Ns∏

�=1

L�
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ancestor to all the current microbial sequences. This switch 
changes both the topology of the tree and the branch lengths.

3.	 The switch occurs between two sister lineages: TB is obtained 
from T by re‐dating the divergence between the two sister line‐
ages to the time of the host‐switch. This switch only affects the 
branch lengths of the tree.

4.	 The switch occurs between two distantly related lineages, and the 
receiving branch is not related to the root: TB is obtained from T 
by an internal reorganization of the tree. This switch changes both 
the topology of the tree and the branch lengths.

Technically, in order to reduce computation time, we simulated a 
‘bank of trees’ with ξ switches on the host tree and use these same 
trees in our different analyses. [Colour figure can be viewed at wi‐
leyonlinelibrary.com]

2.1.5 | Model selection

In addition to the general model fitting procedure described above, 
we designed two model selection procedures: the first aims at test‐
ing whether the presence of horizontal switches is statistically sup‐
ported (versus a simpler model with only strict vertical transmission); 
the second aims at testing support for a model with a limited number 
of host switches versus environmental acquisition (OTUs that are 
environmentally acquired will provide high 𝜇̂ and 𝜉 estimates and 
could thus be interpreted as vertical transmission with frequent 
horizontal switches and high substitution rates instead of environ‐
mental acquisition).

In order to test support for a scenario with horizontal host 
switches versus strict vertical transmission, we compute L0=L(AS|𝜇̂,T)
, the likelihood corresponding to the best scenario of evolution of 
the microbial sequences directly on the host tree (i.e. no switch), and 

compare it to the likelihood L1=L
(
AS|𝜇̂,𝜉

)
 corresponding to the best 

scenario with horizontal switches, using a likelihood ratio test. In 
order to test support for a scenario of vertical transmission with hor‐
izontal host switches versus environmental acquisition, we test its 
support when compared to a scenario where microbial populations 
are acquired at random by host species (thereafter referred to as a 
scenario of ‘independent evolution’): we randomize R times the host–
microbe association and run our model on each of these randomized 
data. Next, we analyse the rank of 𝜉 and 𝜇̂ estimated from the original 
alignment in the distribution of �R and �R estimated from the ran‐
domized alignments. Ideally, we would perform a large number of 
randomizations (e.g. R > 100) and directly compute p‐values from the 
ranks of 𝜉 and 𝜇̂. However, for computational reasons we used only 
R = 10 randomized alignments and chose to reject the hypothesis of 
independent evolution if 𝜉 <𝜉R and 𝜇̂ <𝜇R for all R. Conversely, if the 
estimated number of switches ξ or the substitution rate μ are ranked 
within the distribution of �R and �R, we consider that a scenario of 
independent evolution cannot be rejected. There are thus two (in‐
distinguishable) scenarios that will produce microbial alignments that 
won't reject our test of independent evolution: environmental acqui‐
sition and vertical transmission with highly frequent host switches.

2.1.6 | Detecting transmitted OTUs

Based on the analyses above and our definition of modes of inher‐
itance, we sort the OTUs into two different categories: the trans‐
mitted OTUs (those that reject the hypothesis of independent 
evolution, either because they are strictly vertically transmitted, 
or because they are vertically transmitted with few host switches) 
and the independent OTUs (those that do not reject the hypothesis 
of independent evolution, either because they are environmentally 
acquired, or because they experienced enough host switches to be 

F I G U R E  2   Host‐switch simulations. 
(a) Four types of host‐switch can occur 
on the host tree T, and (b, c) these host 
switches generate distinct microbial 
trees TB. Orange arrows represent host 
switches. Orange crosses represent the 
extinction of the microbial lineage on the 
receiving branch

Host tree T and host-switch  

(I) (II) (III) (IV) 

Consequence of the host-switch on microbial lineages 

Resulting microbial tree TB

(a)

(b)

(c)
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indistinguishable from a scenario of environmental acquisition). In 
practice, there is no universal similarity threshold that will provide 
the ‘right’ biological unit delineation across all microbial groups 
(Sanders, Powell, Kronauer, et al., 2014; Figure S2). ‘Over‐splitting’ a 
biological unit using a similarity threshold that is too high for that bi‐
ological unit will reduce statistical signal (each subunit will be repre‐
sented in fewer hosts) and will miss host switches between subunits 
(given that subunits will be analysed independently). ‘Over‐merging’ 
OTUs using a similarity threshold that is too low will tend to blur a 
signal of transmission and will overestimate substitution rates, be‐
cause alignments will mix sequences from distinct biological units. 
By using several clustering thresholds, we can hope to find one that 
properly delimitates biological units. Given that vertical transmission 
tends to be erased by improper delimitation, if it is detected for at 
least one threshold, then it suggests that it is the ‘right’ threshold 
and that vertical transmission does indeed occur.

2.1.7 | Implementation

All the scripts of our model are written in r (R Core Team 2019), using 
the packages ape, phangorn and phytools for the manipulations of 
phylogenetic trees (Paradis, Claude, & Strimmer, 2004; Revell, 2012; 
Schliep, 2011), and are freely available on GitHub (https​://github.
com/hmorl​on/PANDA​) and in the r package rpanda (Morlon et al., 
2015). Some internal functions computing the likelihood are coded 
in C++. We also used the packages parallel, expm, ggplot2, reshape2, 
rcpp and r2html for the technical aspects of the scripts. All outputs of 
our model (e.g. parameter estimation and model selection) are con‐
catenated in a user‐friendly HTML file with different formats (e.g. ta‐
bles, values, pdf plot and diagrams). We provide a tutorial in https​:// 
github.com/BPere​zLama​rque/HOME/blob/maste​r/README.md.

The computational time depends both on the number of host (n) 
and on the number of trees (S) used in the likelihood inference; ex‐
amples of computation time are provided in Figure S3.

2.2 | Testing our approach with simulations

We performed a series of simulations to test the ability of our ap‐
proach to recover simulated parameter values and evolutionary 
scenarios. We calibrated our choices of tree size, alignment size 
and parameter values so as to obtain simulated data comparable 
to those of the great ape microbiota data (Figure S9 and Table S2). 
We considered 3 independent host trees of size n = 20 (T1, T2 and 
T3) simulated under a Yule model (no extinction) using the func‐
tion pbtree from phytools. We scaled these trees to a total branch 
length of 1. On each of these host trees, we considered a scenario 
of strict vertical transmission (ξ = 0), scenarios of vertical trans‐
mission with host switches ξ = [1, 2, 3, 5, 7, 10], and a scenario of 
environmental acquisition; each of these scenarios was obtained 
by simulating the corresponding microbial trees TB. For the sce‐
nario of strict vertical transmission, TB = T. For scenarios of host 
switches, 15 TB per ξ value were derived from T. For the scenario 
of environmental acquisition, 20  TB with n tips were simulated 

under a Yule model independently from T, using the same pro‐
cedure as above. Finally, we simulated on each TB the evolution 
of microbial sequences of a total length N  =  300 using our own 
codes, with a probability 0.1 for each site to be variable. We simu‐
lated the K80 stochastic nucleotide substitution process with a 
ratio of transition/transversion rate κ = 0.66 and three different 
values of substitution rate (μ  =  0.5, 1 or 1.5). The realized pro‐
portion of segregating sites was quite variable and comparable to 
empirical alignments (Fig. S9). We simulated 20 alignments A per 
substitution rate on T for the scenario of strict vertical transmis‐
sion (180 alignments total), and 1 alignment per TB per substitution 
rate for the scenarios of host‐switch (135 alignments per ξ value) 
and environmental acquisition (180 alignments). Thereafter, we 
call ‘ξ‐switches alignment’ an alignment simulated with ξ switches 
on T and ‘independent alignment’ an alignment simulated under 
the environmental acquisition scenario (i.e. independently from T).

We applied our inference approach to each simulated couple of 
T and A and compared the estimated parameters (𝜉, 𝜇̂, and 𝜅̂) to the 
simulated values. We used mixed linear models with the host tree 
(T1, T2 and T3) as a random effect (r package nlme). We tested ho‐
moscedasticity and normality of the model residuals and considered 
a p‐value of 0.05 as significant. We also evaluated the type I and 
type II errors associated with our tests of strict vertical transmission 
and independent evolution.

2.3 | Empirical application: great apes microbiota

We illustrate our approach using data from Ochman et al. (2010); this 
paper is one of the first paper testing hypotheses about codiversifi‐
cation in the well‐studied clade of great apes (using phylosymbiotic 
patterns), and the associated data have been used in other papers 
aimed at studying codiversification (Sanders, Powell, Kronauer, et 
al., 2014). The data set consists of faecal samples collected from 26 
wild‐living hominids, including eastern and western African gorillas 
(two individuals of G. gorilla and two individuals of G. beringei), bono‐
bos (6 individuals of P. paniscus) and three subspecies of chimpan‐
zees (five individuals of P. t. schweinfurthii, seven individuals of P. t. 
troglodytes and two individuals of P. t. ellioti), as well as two humans 
from Africa and America (H. sapiens).

Ochman et al. (2010) extracted DNA from the faecal samples, 
PCR‐amplified the DNA for the 16S rRNA V6 gene region using uni‐
versal primers and finally sequenced the PCR product using 454 (Life 
Sciences/Roche). They obtained 1,292,542 reads after sequence 
quality trimming and barcodes removal. Gut microbiota are now se‐
quenced with more coverage than what was possible at the time of 
the Ochman paper, yet these data represent a good application of 
our approach.

We obtained the reads from Dryad (http://datad​ryad.org/
resou​rce/ https​://doi.org/10.5061/dryad.023s6​). We used py‐
thon scripts from the Brazilian Microbiome Project (BMP, avail‐
able on http://www.brmic​robio​me.org/) (Pylro et al., 2014) which 
combines scripts from QIIME 1.8.0 (Caporaso et al., 2010) and 
USEARCH 7 (Edgar, 2013) as well as our own bash codes. We 

https://github.com/hmorlon/PANDA
https://github.com/hmorlon/PANDA
https://github.com/BPerezLamarque/HOME/blob/master/README.md
https://github.com/BPerezLamarque/HOME/blob/master/README.md
http://datadryad.org/resource/
http://datadryad.org/resource/
https://doi.org/10.5061/dryad.023s6
http://www.brmicrobiome.org/
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merged raw reads from all the hosts and processed them step by 
step:

1.	 Dereplication: we discarded all the singletons and sorted the 
sequences by abundance using USEARCH commands derep_full‐
length and sortbysize

2.	 Chimera filtering and OTU clustering: we removed chimers and 
clustered sequences into OTUs using the ‐cluster_otus command 
of the UPARSE pipeline (Edgar, 2013). We chose a 1.0, 3.0 or 5.0 
OTU radius (the maximum difference between pairs of OTU mem‐
ber sequences), which corresponds to a minimum identity of 99%, 
97% and 95%. We performed an additional chimera filtering step 
using uchime_ref with the RDP database as a reference (http://
drive5.com/uchim​e/rdp_gold.fa). We obtained 1,074 OTUs at 
95%, 1,793 at 97%, and 4,935 at 99% (Table S1).

3.	 Taxonomic assignation: we assigned taxonomy using a represent‐
ative sequence for each OTU generated (with ‐cluster_otus), using 
assign_taxonomy.py from QIIME and the latest version of the 
Greengenes database (http://green​genes.secon​dgeno​me.com), 
or using BLAST when Greengenes did not assign taxonomy with 
enough resolution.

4.	 Mapping reads to OTUs and OTU table construction: we used the 
usearch_global command to map all the reads from the different 
samples to these taxonomy‐assigned OTUs. Then, we used make_
otu_table.py and BMP scripts to build the OTU table (a list of all 
the OTUs with their abundance by host individual).

5.	 Core‐OTUs selection: we selected the ‘core’ OTUs as the ones 
that occurred in at least 75% of the host individuals, using the 
compute_core_microbiome.py script from QIIME. This resulted in 
134 core OTUs at 95%, 120 at 97%, and 71 at 99% (there are more 
OTUs at 99% than at 97% and 95%, but a much smaller proportion 
that are core OTUs, Table S1).

6.	 Making intra‐OTU alignments: discarding few OTUs that had 
unvaried alignments, we obtained 130 core OTUs at 95%, 110 
core OTUs at 97%, and 66 core OTUs at 99% similarity thresh‐
olds (Table S1). Microbial genetic variability within each OTU 
and within each host individual (hereafter referred to as ‘intra‐
individual variability’) was quite high, sometimes higher than 
inter‐individual variability (Figure S10a–c), suggesting that it was 
due to PCR and sequencing artefacts rather than true variability. 
Therefore, we built the bacterial alignment for a given OTU by 
selecting for each host individual the most abundant sequence 
among all the reads mapped to that OTU. This sequence is less 
likely to be subject to sequencing errors.

Finally, we applied our approach to each core OTU separately, and to 
the nexus tree of the 26 host individuals, constructed with mitochon‐
drial markers provided in the supplementary data of the article, scaled 
to a total branch length of 1. We used this individual‐level tree instead 
of the species‐ or subspecies‐level tree in order to increase tree size 
(there are only seven subspecies in our great apes tree); this approach 
also provides a way to account for microbial genetic variability within 
host subspecies (hereafter referred to as ‘intraspecific variability’). We 

arbitrarily resolved intra subspecies polytomies by assigning quasi‐null 
branch lengths (10−4) to the corresponding branches. We classified the 
OTUs into ‘transmitted’ and ‘independent’ OTUs; among the transmit‐
ted OTUs, we distinguished those where the transmission is strictly 
vertical, and for the others, we recorded the estimated number of host 
switches. In order to get an idea of the proportion of the microbiota 
that is transmitted, we also recorded the number of reads correspond‐
ing to the transmitted OTUs.

2.4 | Accounting for intra‐host genetic variability

Our treatment of the great ape data illustrates an approach to ac‐
count for intra‐host microbial genetic variability: instead of running 
HOME on a species‐level host tree (with a single representative mi‐
crobial sequence per host species), it can be run on an individual‐level 
host tree, with arbitrarily small intraspecific branch lengths. Because 
this usage of HOME is slightly different from the case envisioned 
in our description of the approach, we tested its behaviour. We 
simulated the evolution of microbial alignments on the great apes 
subspecies tree with a range of intraspecific variability similar to the 
range observed in the great apes alignments. For each OTU align‐
ment, we defined intraspecific variability (V) as the mean nucleotidic 
diversity within host subspecies (computed using Nei's estimator; 
Ferretti, Raineri, & Ramos‐Onsins, 2012) divided by the total nu‐
cleotidic diversity computed on the entire alignment. We simulated 
a total of 180 alignments according to three scenarios: strict verti‐
cal transmission (ξ = 0), transmission with five host switches (ξ = 5), 
and environmental acquisition. For every scenario, we simulated in‐
traspecific variability by extending the stochastic process generat‐
ing nucleotidic substitution on every sequence for a time range that 
allowed to obtain levels of intraspecific variability that corresponded 
to the empirical level of intraspecific variability (Figure S10d–i). We 
ran HOME on each of these simulated alignments and evaluated its 
performance, in terms of parameter estimation and model selection, 
when there was no intraspecific variability (V  =  0), low and inter‐
mediate intraspecific variability (0 < V < 0.5), and high intraspecific 
variability (V > 0.5).

3  | RESULTS

3.1 | Performance of HOME

Likelihood landscapes typically display a single peak, illustrating that 
ξ and μ are in general identifiable (Figure S1). Rarefaction curves also 
indicate that using S = 104 trees to compute the likelihood provides a 
good approximation (Figure S4). Testing the performance of HOME 
using intensive simulations, we find a reasonable ability to recover 
simulated parameter values (Figure 3). Estimates of the number of 
switches 𝜉 are highly correlated with simulated ξ values, although 
the approach tends to overestimate the true number of switches 
when there are very few (<2) and to underestimate this number 
when there are many (Figure 3a). The linear regression confirms 
these results 𝜉  =  2.15 (Fdl=606  =  1,015, p‐value <.0001)  +  ξ  *  0.58 

http://drive5.com/uchime/rdp_gold.fa
http://drive5.com/uchime/rdp_gold.fa
http://greengenes.secondgenome.com
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(Fdl=606  =  141, p‐value <.0001). The ability to recover the true 
number of switches does not depend on the simulated substitu‐
tion rate (Fdl=606 = 0.2601, p‐value =  .61; Figure S5). The substitu‐
tion rate is rather well estimated (Figure 3b), although it tends to 
be slightly overestimated when the simulated number of switches 
exceeds 3 (slope 0.04; Fdl=606  =  45.9, p‐value <.0001; Figure 3b). 
The simulated transition/transversion rate ratio κ is well estimated 
(median ± SD = 0.68 ± 0.17), although it is slightly underestimated 
when the substitution rate is high (slope of −0.015; Fdl=606 = 12, p‐
value  =  .0007). For alignments simulated independently from the 
host tree, the approach estimates a high number of switches (me‐
dian ± SD = 16 ± 6.2, Figure 3a), and highly overestimates the substi‐
tution rate (Figure 3b). The type of host tree (T1, T2 or T3) has little 
impact on the estimation of ξ (it explains <3% of the total variance, 
Figure S5), μ (around 10%, Figure S6) and κ (<0.01%).

Our model selection procedure has very low type I error rates, and 
type II error rates that depend on the situation (Figure 4): the hypothesis 

of strict vertical transmission was nearly never rejected when trans‐
mission was indeed strictly vertical (1/180, type I error  =  0.0056%) 
and always rejected under environmental acquisition (Figure 4a); 
conversely, the hypothesis of independent evolution was almost al‐
ways rejected when transmission was strictly vertical (1/180) and al‐
most never rejected under environmental acquisition (3/180, type I 
error = 0.017%, Figure 4b). While the type I error rates of the two tests 
are low, their power to detect a scenario of strict vertical transmission 
with host switches is variable. In the case of the test of strict vertical 
transmission, the power ranges from 95% for ξ = 10 to 45% when ξ = 1 
(Figure 4a). In the case of the test of independent evolution, the power 
ranges from 100% for ξ = 1 to 60% for ξ = 10, and it would decrease 
further with more switches (Figure 4b). In both cases, the power in‐
creases when the substitution rate μ is larger (Figure S7).

When HOME is applied to an individual‐level host tree in order 
to account for intraspecific microbial genetic variability, type I error 
rates associated to the test of independent evolution remain very low 

F I G U R E  3   Parameter estimation. Estimated versus simulated number of switches ξ (a) and substitution rate μ (b) under various 
evolutionary scenarios (strict vertical transmission, vertical transmission with a given number of switches, and independent evolution, 
referred in the figure as ‘indep’). Simulated values are represented by blue ticks in (a) and dashed lines in (b). Boxplots present the median 
surrounded by the first and third quartile, and whiskers extended to the extreme values but no further than 1.5 of the inter‐quartile range.
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regardless of the magnitude of the variability (Figure S8). The confi‐
dence in the estimation of the parameters (ξ and μ) remains good for 
low values of intraspecific variability (V < 0.5), but decreases with in‐
creasing variability (V > 0.5). The type I error rate associated to the test 
of strict vertical transmission increases with increasing variability, and 
the power of the two tests decreases with increasing variability.

3.2 | Modes of inheritance in the great 
apes microbiota

Applying HOME to great apes gut microbiota data, we found that 
among the core OTUs with at least one segregating site, ~1 in 10 
OTUs is transmitted (i.e. rejects the test of independent evolution, 
Figure 5a); more specifically, the ratios of transmitted OTUs (and 
strictly vertically transmitted OTUs) were the following: 12(8)/130 
at 95%, 12(10)/110 at 97%, and 4(4)/66 at 99%. In terms of relative 
abundance, 108,206 raw sequences in a total of 1,292,542 (8.4%) be‐
longed to transmitted OTUs (Table S3). Almost half of the sequences 

from transmitted OTUs (49,508) were from an Acinetobacter bac‐
terium (Moraxellaceae family); another important pool of these se‐
quences was from the family Prevotellaceae (28,843 reads). In total, 
12 bacterial families (in 27) contained OTUs that were transmitted, 
including Veillonellaceae, Lachnospiraceae, Ruminococcaceae and 
Paraprevotellaceae (Figure 5b, Table S4). Some of these families 
(e.g. Desulfurococcaceae, Pelobacteraceae, Rhodocyclaceae and 
Eubacteriaceae) were entirely made of a transmitted OTU, while oth‐
ers also had many OTUs and/or sequences that were independent 
(e.g. Ruminococcaceae, Lachnospiraceae and Coriobacteriaceae). 
Transmitted OTUs were in general not more abundant in a particular 
group of host species, except for the Prevotellaceae, that were over‐
all more abundant in bonobos and chimpanzees than in gorillas and 
humans (Figure 5b).

The sequence length, proportion of segregating sites and intra‐
individual variability of the OTUs inferred as transmitted were simi‐
lar to those of other OTUs (Figure S9 and Table S2), suggesting that 
HOME is not biased towards detecting vertical transmission in OTUs 

F I G U R E  5   Transmitted OTUs in the great ape microbiota: (a) Percentage of OTUs rejecting the hypothesis of independent evolution at 
the three % similarity clustering thresholds. (b) Phylogenetic tree of greats apes and their associated transmitted OTUs (black: 95% similarity 
threshold, grey: 97%, white: 99%). The percentage indicated in parenthesis for each family is the estimated percentage of transmitted 
raw reads in the family. The colour of the heat map represents for OTU each host the percentage of raw reads of the OTU in the entire 
microbiota of the host. A white square means that the OTU is not found in the host.
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with specific characteristics. However, the intraspecific variability of 
OTUs inferred as transmitted tends to be smaller than that of other 
OTUs (Table S5), which is consistent with our simulation results 
showing that the power to detect vertical transmission decreases 
with increasing intraspecific variability.

4  | DISCUSSION

We developed HOME, a likelihood‐based approach for studying the 
inheritance of microbiota during the evolution of their hosts from 
metabarcoding data. We showed using simulations that even rela‐
tively short reads can help identify modes of inheritance, without 
the need to build a microbial phylogenetic tree. Applying HOME to 
great apes microbiota data, we identified a set of transmitted gut 
bacteria that account on average for 8.4% of the total reads of the 
gut microbiota.

Our combination of model fitting and hypothesis testing helps 
identify modes of inheritance. We see the estimate of the number 
of switches as a good indicator of modes of inheritance (from strict 
vertical transmission for low ξ values to transmission with high rates 
of horizontal switches or environmental acquisition for high ξ val‐
ues) rather than as an accurate estimation of past host switches. We 
have indeed shown that ξ tends to be underestimated when quite 
many switches are simulated on a fixed host tree. In nature, this un‐
derestimation may be even more pronounced, as our model ignores 
host switches that happened in lineages not represented in the phy‐
logeny, as a result of either extinction or undersampling (Szöllosi et 
al., 2013). In line with these results, we find that the hypothesis of 
strict vertical transmission is often not rejected when there are in 
fact host switches. On the other hand, we can also estimate a pos‐
itive ξ from data simulated under strict vertical transmission; how‐
ever, in this case, a model with host switches will in general not be 
selected when compared to a model of strict vertical transmission. 
Hence, if the hypothesis of strict vertical transmission is rejected, 
one can conclude with confidence that host switches occurred (or 
that the microbial unit was environmentally acquired). Similarly, the 
hypothesis of independent evolution is often not rejected when the 
transmission is actually vertical with rather frequent host switches, 
and rarely rejected in scenarios of environmental acquisition, such 
that when it is rejected, one can conclude with confidence that the 
microbial unit is transmitted. Said differently, our approach is con‐
servative in its identification of transmitted OTUs; and when an OTU 
is identified as being transmitted, our approach is conservative in its 
identification of switches.

We assessed the performance of HOME in a limited set of con‐
ditions (e.g. host tree size, sequence length, substitution rates) cal‐
ibrated on the great apes microbiota data. We can expect that the 
power of the model will increase with host tree size and the num‐
ber of segregating sites in the microbial alignment. As the latter is a 
combination of sequence length, substitution rate and hosts diver‐
gence times, there is no universal guidelines on the applicability of 
the model to a particular marker, sequencing technology, and host 

clade age. Rather, the marker and sequencing technologies must be 
adapted to the study system. For example, the 200–300  bp‐long 
16S rRNA V6 gene region sequenced with 454 sequencing used on 
great apes in our empirical application was enough to identify some 
transmitted microbial OTUs, but it probably missed others that had 
too low substitution rates to leave a detectable signal. Similarly, it 
would probably have a too low resolution to detect variability be‐
tween host species that diverged more recently than the great apes. 
In such cases, using longer sequences and/or markers that evolve 
more quickly can be necessary. Finally, we can expect that PCR and 
sequencing errors will blur the signal and reduce the power to detect 
transmitted OTUs, although this should be limited by selecting the 
most abundant sequence representative of each OTU for each host.

HOME is currently best suited to the study of microbiota trans‐
mission in recent, well‐sampled host clades in which no or few extinc‐
tions occurred, since it does not account for unsampled host lineages, 
nor for host extinctions. For example, HOME would be well adapted 
to the study of microbiota transmission in some vertebrates and in‐
vertebrate clades, for which microbiota sequencing data are already 
available (Amato et al., 2019; Brooks, Kohl, Brucker, van Opstal, & 
Bordenstein, 2016; Ren, Kahrl, Wu, & Cox, 2016). Ignoring extinction 
is reasonable at the small evolutionary scales of such groups or the 
great apes (Ochman et al., 2010), but it would not be at larger evolu‐
tionary timescales such as across invertebrate or vertebrate species; 
in this case, accounting for host switches from now‐extinct lineages 
is necessary (Szöllosi et al., 2013). Another reason why HOME is 
currently better adapted to studying recent rather than ancient host 
clades is that it does not account for extinction of symbiont lineages 
and therefore can only model the inheritance of OTUs shared across 
most species (i.e. core OTUs); the more divergent the host species, 
the less core OTUs there will be. Further developments of the model 
that would allow extending its relevance to a broader range of data 
include accounting for extinction and incomplete sampling in the 
host clade, as well as incorporating symbiont extinctions.

When it occurs, the support for vertical transmission of a 
given microbial unit arises from a phylogenetic signal in microbial 
sequences (i.e. a congruence between the phylogenetic similarity 
of host species and the molecular similarity of the microbes they 
host). However, such congruence can also arise from processes not 
accounted for in our model, such as geographic or environmental ef‐
fects; for example, if there is a phylogenetic/molecular signal in the 
geographic or habitat distribution of hosts/ microbes, or if the host 
environment creates microbial selective filters, this could result in 
a phylogenetic signal in microbial sequences that could be mislead‐
ingly interpreted as vertical transmission. We have not evaluated the 
robustness of our approach to such effects. Future developments 
could involve reconstructing ancestral areas/habitats or host envi‐
ronments on the host phylogeny in order to distinguish a phyloge‐
netic signal truly driven by vertical transmission versus other effects.

In the construction of the model, we have made the important 
assumption that there is no microbial genetic variability within host 
species, such that each microbial OTU is represented by at most 
one sequence in each host. This is quite unlikely in natural microbial 
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populations where multiple microbial strains can colonize a host 
species (Ellegaard & Engel, 2016). In our empirical application, we 
tackled this limitation by representing each host species by sev‐
eral individuals, using approximately zero‐length branches to split 
conspecifics in the host phylogeny. Although our simulations show 
that the statistical power of our tests decreases strongly when in‐
traspecific variability is high, they also show that the hypothesis of 
environmental acquisition is rarely rejected when the acquisition 
is indeed environmental. Hence, HOME is unlikely to misleadingly 
identify transmitted OTUs, especially in the presence of intraspecific 
variability. Another (more satisfying) approach would be to directly 
account for intraspecific variability in microbial sequences in the 
likelihood computation; this could for example be done by repre‐
senting the data by – at each tip of the host phylogeny and for each 
nucleotidic site – a vector of probabilities of states A, C, G and T 
representing the intra‐host relative abundance of the four bases at 
the given nucleotidic position. In this case, we would directly use 
the variation given at the level of amplicon sequence variants (ASVs) 
(Callahan et al., 2016). Alternatively, further developments of HOME 
incorporating horizontal host switches without replacement (i.e. the 
persistence of both ancestral and newly acquired symbionts in a lin‐
eage), as well as dynamics of duplication and recolonization, would 
allow better accounting for intra‐host genetic variability. In addition, 
rather than considering each OTU as a separately evolving unit, it 
would be interesting to account for interactions between these 
units, that can for example lead to competitive exclusion (Koeppel 
& Wu, 2014) or interdependency (e.g. adaptive gene loss; Morris, 
Lenski, & Zinser, 2012), and are crucial aspects of microbial commu‐
nity assembly.

In the great apes gut microbiota, we found that the major part of 
the microbiota (91.6%) is constituted of bacteria which acquisition 
scenario is not distinguishable from one that is independent from the 
great apes phylogeny (Amato et al., 2019; Moeller et al., 2013). Still, 
we identified OTUs representing 8.4% of the total number of reads 
that are transmitted across generations during millions of years of 
evolution. Given the low phylogenetic signal in the geographic distri‐
bution of the hosts (see Ochman et al., 2010), these OTUs are likely 
truly transmitted vertically. And given that HOME is conservative in 
its identification of transmitted OTUs, 8.4% is a lower bound estimate 
of the relative abundance of the microbiota that is vertically trans‐
mitted. Thus, our results suggest that the phylosymbiosis pattern 
observed by Ochman et al. (Ochman et al., 2010) is partially driven 
by vertically transmitted bacteria, as suggested by Sanders, Powell, 
Kronauer, et al. (2014). Our approach offers the advantage of inves‐
tigating the whole microbiota without an a priori on which families 
might be transmitted; it identified 12 microbial families with trans‐
mitted OTUs. This is a good complement to approaches that focus 
on few candidate families, such as in Moeller et al.'s study (Moeller 
et al., 2016). In the later study, the authors used 3 specific primer 
pairs to focus on 3 families (Bacteroidaceae, Bifidobacteriaceae 
and Lachnospiracea) and showed that phylogenies representing 
the Bifidobacteriaceae and Bacteroidaceae were congruent with 
the apes phylogeny, suggesting that codiversification occurred in 

these two families. Unfortunately, neither Bifidobacteriaceae nor 
Bacteroidaceae were represented in the core OTUs in Ochman et 
al.’s data, even with a 95% similarity threshold: those bacteria were 
either not sampled, badly processed during DNA extraction and PCR, 
poorly taxonomically annotated, or too divergent to be merged into 
a single core OTU defined at 95%. Conversely, while Moeller et al. 
did not find any signal of cophylogeny in the Lachnospiraceae family, 
we found 3 transmitted OTUs belonging to this family. The authors 
investigated the phylogenetic relationships between all the amplified 
strains of Lachnospiraceae and whether they match the phylogenetic 
tree of great apes. This illustrates the utility of our approach, which 
investigates transmission modes of separate OTUs within bacterial 
families, rather than considering in a single evolutionary framework 
all the sequences from the same family.

Among the families in which we found transmitted OTUs, some 
are well known for having mutualistic properties. For example, the 
Lachnospiraceae, Paraprevotellaceae and Rhodocyclales families 
are involved in breaking down complex carbohydrates in the gut; 
they have even evolved fibrolytic specialization in gut communi‐
ties (Biddle, Stewart, Blanchard, & Leschine, 2013). These vertically 
transmitted fibrolytic bacteria, which have been codiversifying for 
millions of years with the great apes, would thus constitute for the 
great apes a conserved reservoir of gut symbionts able to digest 
carbohydrates and might have facilitated frequent and rapid dietary 
shifts during the evolutionary history of hominids (Hardy, Brand‐
Miller, Brown, Thomas, & Copeland, 2015; Head, Boesch, Makaga, & 
Robbins, 2011; Muegge et al., 2011). However, why these particular 
bacteria are faithfully vertically transmitted while other digesting 
gut bacteria seem largely environmentally acquired (or vertically 
transmitted with frequent host switches) remains unclear.

DNA metabarcoding data for microbiota are being collected 
across multiple hosts at an unprecedented scale. Our approach al‐
lows identifying, among numerous microbial units, those that are 
vertically transmitted and potentially co‐evolving with their hosts. 
The current implementation of our model is entirely adapted to ap‐
plications to other data sets using different sequencing techniques, 
clustering methods and de‐noising algorithms. Being able to identify 
vertically transmitted microbial units is an important step towards 
a better understanding of the role of microbial communities on the 
long‐term evolution of their hosts.
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Supp.	Figure	S1:	Likelihood	landscapes	

Examples	of	likelihood	landscapes	under	scenarios	of:	A)	strict	vertical	transmission,	B)	

vertical	transmission	with	5	host-switches,	and	C)	environmental	acquisition.	These	

landscapes	were	obtained	from	alignments	simulated	on	a	20	tips	host	tree	(simulated	

under	the	Yule	process),	with	parameters	similar	to	those	used	in	the	section	“Testing	

our	approach	with	simulations”.	These	landscapes	have	a	clearly	identified	peak	that	

corresponds	to	the	most	likely	parameter	values,	illustrating	the	identifiability	of	the	

model.		 	
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Supp.	Figure	S2:	Detecting	transmitted	OTUs	
Problems	faced	when	trying	to	delineate	the	“right”	biological	unit	across	all	microbial	

groups:	“over-splitting”	(right)	a	biological	unit	using	a	similarity	threshold	that	is	too	

high,	and	“over-merging”	(left)	OTUs	using	a	similarity	threshold	that	is	too	low.		

	

	
	 	

Biological 
unit 1

Biological 
unit 2

Select the most 
abundant sequence

OTU1
OTU2

OTU3

Split 2 Biological units in 
1 OTU alignment

!

!

!

Split the Biological unit in 
2 OTU alignments

OTU3 OTU2

Host tree Biological 
unit 1

Biological 
unit 2

“Biological units” evolving 
on the host tree

Relative 
Abundance

Too low threshold 
(e.g. 95%)

Too high threshold
(e.g. 99%)

Biological 
unit 1

Cl
us

te
rin

g
O

TU
s

M
ak

in
g 

O
TU

 a
lig

nm
en

ts
 



	

	 3	

	

	

Supp.	Figure	S3:	Computational	time	of	HOME	

The	computational	time	of	HOME	increases	linearly	with	the	number	of	hosts	n	(here	

n=10,	20,	30,	40,	or	50	species)	and	the	number	of	trees	S	used	in	the	likelihood	

inference	(here	S=1,000	in	orange,	and	S=10,000	trees	in	red).	The	computation	time	

reported	here	for	each	n	and	S	corresponds	to	the	cumulative	time	required	to	fit	HOME	

and	to	perform	the	tests	of	strict	vertical	transmission	and	independent	evolution	on	3	

alignments,	one	simulated	with	strict	vertical	transmission,	the	other	one	vertical	

transmission	with	5	host-switches,	and	the	last	environmental	acquisition.	Other	

parameters	were	similar	to	the	parameters	used	in	the	section	“Testing	our	approach	

with	simulations”.	Simulations	were	performed	on	a	multi-cores	cluster,	using	16	cores.	
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Supp.	Figure	S4:	Rarefaction	curves	

Approximation	of	the	minus	log-likelihood	of	the	model	as	a	function	of	the	number	S	of	

trees	TB	used	in	the	computation	of	the	likelihood	for	scenarios	of:	A)	strict	vertical	

transmission,	B)	vertical	transmission	with	5	host-switches,	and	C)	environmental	

acquisition.	Likelihoods	computed	on	alignments	simulated	on	a	20	tips	host	tree	

(simulated	under	the	Yule	process),	with	parameters	similar	to	those	used	in	the	section	

“Testing	our	approach	with	simulations”.	Each	line	corresponds	to	a	given	number	of	

host	switches	(ξ).	At	a	given	S,	the	lower	line	corresponds	to	the	most	likely	number	of	

switches.		
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Supp.	Figure	S5:	Estimated	versus	simulated	number	of	switches	ξ	on	the	three	different	

host	trees	T1,	T2	and	T3	(represented	by	three	different	colors)	and	for	three	different	

substitution	rates.	Blue	ticks	represent	the	simulated	values.	

	

	

	

Supp.	Figure	S6:	Estimated	versus	simulated	substitution	rate	μ	on	the	three	different	

host	trees	T1,	T2	and	T3	(represented	by	three	different	colors).	Blue	dashed	lines	

represent	the	simulated	values.	 	

0

1

2

3

4

5

0 1 2 3 5 7 10 indep
Simulated number of switches

Es
tim

at
ed

 s
ub

st
itu

tio
n 

ra
te

tree
T1

T2

T3

0

1

2

3

4

5

0 1 2 3 5 7 10 indep
Simulated number of switches

Es
tim

at
ed

 s
ub

st
itu

tio
n 

ra
te

tree
T1

T2

T3

1

2

3

4

5

0 1 2 3 5 7 10 indep
Simulated number of switches

Es
tim

at
ed

 s
ub

st
itu

tio
n 

ra
te

tree
T1

T2

T3

Simulated µ = 0.5 Simulated µ = 1 Simulated µ = 1.5 

A B C 

●
●

●
●

●

●

●

0

5

10

15

20

25

0 1 2 3 5 7 10
Simulated number of switches

Es
tim

at
ed

 n
um

be
r o

f s
w

itc
he

s

tree
T1

T2

T3

●
●

●
●

●

●

●

0

5

10

15

20

25

0 1 2 3 5 7 10
Simulated number of switches

Es
tim

at
ed

 n
um

be
r o

f s
w

itc
he

s

tree
T1

T2

T3

●
●

●
●

●

●

●

0

5

10

15

20

25

0 1 2 3 5 7 10
Simulated number of switches

Es
tim

at
ed

 n
um

be
r o

f s
w

itc
he

s

tree
T1

T2

T3

Simulated µ = 0.5 Simulated µ = 1 Simulated µ = 1.5 

A B C 



	

	 6	

	

	

Supp.	Figure	S7:	Percentage	of	simulated	alignments	for	which	the	null	hypothesis	of	

strict	vertical	transmission	(A)	or	independent	evolution	(B)	is	rejected	under	various	

evolutionary	scenarios	(strict	vertical	transmission,	vertical	transmission	with	a	given	

number	of	switches,	and	independent	evolution)	and	different	simulated	substitution	

rates.	 	
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Supp.	Figure	S8:	Effect	of	intraspecific	variability	on	parameter	estimation	and	model	

selection.		

Alignments	have	been	grouped	according	to	their	intraspecific	variability.		

A:	Estimated	versus	simulated	number	of	switches		

B:	Estimated	versus	simulated	substitution	rates		

C:	%	of	simulations	rejecting	the	hypothesis	of	strict	vertical	transmission		

D:	%	of	simulations	rejecting	the	hypothesis	of	environmental	acquisition	
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Supp.	Figure	S9:	Characteristics	of	the	empirical	alignments.		

a-c:	distribution	of	the	lengths	of	the	empirical	alignments	for	the	different	clustering	

thresholds	

d-f:	distribution	of	ratio	of	segregating	sites	of	the	empirical	alignments	for	the	different	

clustering	threshold		

g-i:	distribution	of	ratio	of	segregating	sites	of	the	simulated	alignments	for	the	different	

simulated	substitution	rates		
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Supp.	Figure	S10:	Genetic	variability	within	OTUs	

a-c:	intra-individual	variability	versus	inter-individual	variability	within	each	OTU	for	

the	different	clustering	thresholds.	Intra-individual	variability	can	be	high	compared	to	

inter-individual	variability	(e.g.	c),	suggesting	that	it	is	driven	by	sequencing	and	PCR	

errors.	

d-f:	intra-specific	variability	versus	inter-specific	variability	within	each	OTU	for	the	

different	clustering	thresholds.	(NB:	we	only	consider	the	most	abundant	sequence	per	

individual)		

g-i:	histogram	of	the	ratio	of	intra-specific	versus	inter-specific	variability	(V)	within	

each	OTU	for	the	different	clustering	thresholds.	

The	red	lines	correspond	to	the	first	bisector.	Every	dot	corresponds	to	one	OTU.	
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Supplemental	tables:	
	

Supp.	Table	S1.	Number	of	OTUs	from	the	great	apes	microbiota	for	the	different	

clustering	thresholds.	HOME	can	only	be	applied	on	the	core	variant	OTUs.	The	two	last	

rows	indicate	the	total	number	of	reads	corresponding	to	the	core	OTUs	(resp.	variant	

core	OTUs)	for	the	different	clustering	thresholds	(as	a	reference,	the	total	number	of	

raw	reads	is	1,292,542).	

	

	

	

	

	

	

	

	

	

	

	

		 	

 Clustering threshold  

 95% 97% 99% 

Total number of OTUs 1,074 1,793 4,935 

Number of core OTUs (present in 
more than 75% individuals) 134 120 71 

Number of core variant OTUs (at least 
one segregating site) 130 110 66 

Total number of reads corresponding 
to core OTUs 749,605 611,193 241,666 

Total number of reads corresponding 
to core variant OTUs 720,633 554,230 239,236 
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Supp.	Table	S2.	Comparison	of	the	characteristics	of	all	the	empirical	alignments,	the	

alignments	inferred	as	corresponding	to	transmitted	OTUs,	and	the	simulated	

alignments	(when	applicable):	

	

	

	 	

 All OTUs Transmitted OTUs Simulations 
 Threshold OTUs Substitution rate 

 95% 97% 99% 95% 97% 99% 1.5 1 0.5 

Average length of the 
alignments 263 264 267 265  264 262 300 300 300 

Average number of  
segregating sites 20.1 12.8 5.6 18.2 17.6 3.5 21.9 17.4 10.7 

Average ratio number 
segregating sites / 
alignment length 

0.076 0.048 0.021 0.068 0.066 0.013 0.073 0.058 0.036 

Average intra-individual 
variability 0.020 0.015 0.012 0.014 0.012 0.012 NA NA NA 
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Supp.	Table	S3.	Taxonomic	information	and	estimated	parameters	from	the	

transmitted	OTUs.	“Threshold”	stands	for	the	percent	similarity	cut-off	used	for	OTU	

delimitation.	“Relative	abundance”	is	the	total	number	of	sequences	in	the	

corresponding	OTU	divided	by	the	total	number	of	sequences	in	the	study.	“Number	of	

non-overlapping	reads”	is	the	number	of	sequences	in	the	OTU	that	do	not	occur	in	

another	OTU	(at	a	different	threshold).		

	 	

OTU Name Taxonomic family Estimated 
µ

Estimated 
ξ

Strict vertical 
transmission Threshold Relative 

abundance
Total number 

of reads

Number of non-
overlapping 

reads
OTU137396942    Alcaligenaceae 0.006 0 Not rejected 95 0.08% 1,089 6
OTU284019116    Alcaligenaceae 0.006 0 Not rejected 97 0.08% 1,083 0
OTU382421569    Coriobacteriaceae 1.400 4 Rejected 95 0.09% 1,111 1,111
OTU714176148    Coriobacteriaceae 0.006 0 Not rejected 97 0.15% 1,940 1,940
OTU910924283    Coriobacteriaceae 0.006 0 Not rejected 99 0.03% 339 339
OTU329886714    Desulfurococcaceae 0.006 1 Rejected 95 0.10% 1,279 431
OTU114691526    Desulfurococcaceae 0.066 1 Rejected 97 0.07% 848 0
OTU322547943    Eubacteriaceae 0.006 0 Not rejected 97 0.10% 1,300 1,300
OTU548957525    Lachnospiraceae 0.006 0 Not rejected 95 0.02% 297 5
OTU693717586    Lachnospiraceae 4.994 4 Rejected 95 0.04% 551 551
OTU777004095    Lachnospiraceae 0.006 0 Not rejected 95 0.06% 771 771
OTU516660135    Lachnospiraceae 0.006 0 Not rejected 97 0.02% 292 0
OTU657732334    Lachnospiraceae 0.066 0 Not rejected 97 0.22% 2,834 2,834
OTU908720582    Lachnospiraceae 0.006 0 Not rejected 97 0.10% 1,343 1,343
OTU234421667    Lachnospiraceae 0.006 0 Not rejected 99 0.08% 1,034 1,034
OTU469780863    Moraxellaceae 0.653 6 Not rejected 97 3.83% 49,508 49,508
OTU843396479    Paraprevotellaceae 0.006 0 Not rejected 95 0.17% 2,176 53
OTU347786903    Paraprevotellaceae 0.006 0 Not rejected 97 0.16% 2,123 0
OTU728699596    Paraprevotellaceae 0.006 0 Not rejected 99 0.03% 334 334
OTU113078451    Pelobacteraceae 0.006 0 Not rejected 95 0.06% 712 712
OTU257931929    Prevotellaceae 0.006 0 Not rejected 95 0.13% 1,665 1,665
OTU892624276    Prevotellaceae 3.175 9 Rejected 95 2.23% 28,843 28,843
OTU559296426    Rhodocyclaceae 0.006 0 Not rejected 95 0.05% 680 1
OTU735260590    Rhodocyclaceae 0.066 0 Not rejected 97 0.05% 679 0
OTU733943228    Ruminococcaceae 4.993 2 Rejected 97 0.18% 2,307 2,307
OTU704142964    Veillonellaceae 0.006 0 Not rejected 95 0.63% 8,092 21
OTU314436093    Veillonellaceae 0.006 0 Not rejected 97 0.62% 8,072 1
OTU465803492    Veillonellaceae 0.006 0 Not rejected 99 0.53% 6,881 0
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Supp.	Table	S4:	Taxonomic	repartition	of	transmitted	OTUs.	

For	each	threshold,	we	give	the	number	of	transmitted	OTUs	divided	by	the	total	

number	of	core	OTUs	corresponding	to	a	given	bacterial	family.	We	also	give	the	

percentage	of	reads	corresponding	to	transmitted	OTUs.	

	 	

Bacterial family 
Ratio of transmitted OTUs over the total number of 

OTUs in the family and percentage of reads  
95% 97% 99% Total 

Alcaligenaceae 
1/2 

(73%) 
1/2 

(73%) 
0/1 

(0%) 
65% 

Coriobacteriaceae 
1/4 

(4%) 
1/8 

(9%) 
1/10 
(5%) 

6% 

Desulfurococcaceae 
1/1 

(100%) 
1/1 

(100%) 
0/0 

(NA) 
100% 

Lachnospiraceae 
3/6 

(1%) 
3/24 
(4%) 

1/33 
(2%) 

2% 

Paraprevotellaceae 
1/3 

(14%) 
1/2 

(15%) 
1/2 

(3%) 
11% 

Pelobacteraceae 
1/1 

(100%) 
0/0 

(NA) 
0/0 

(NA) 
100% 

Prevotellaceae 
2/4 

(38%) 
0/10 
(0%) 

0/11 
(0%) 

21% 

Rhodocyclaceae 
1/1 

(100%) 
1/1 

(100%) 
0/0 

(NA) 
100% 

Veillonellaceae 
1/5 

(19%) 
1/6 

(22%) 
1/4 

(27%) 
22% 

Eubacteriaceae 
0/0 

(NA) 
1/1 

(100%) 
0/0 

(NA) 
100% 

Moraxellaceae 
0/0 

(NA) 
1/2 

(39%) 
0/1 

(0%) 
23% 

Ruminococcaceae 
0/24 
(0%) 

1/21 
(2%) 

0/13 
(0%) 

1% 
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Supp.	Table	S5:	Ratio	of	intra-specific	versus	inter-specific	variability	(V)	within	each	

OTUs	of	the	great	apes	microbiota	for	the	different	clustering	threshold.	We	computed	

(V)	as	the	average	of	the	ratio	of	specific	variability	for	every	(sub)-species	among	the	7	

(sub)-species	of	great	apes.	

	

	

 All OTUs Transmitted OTUs 
 Threshold OTUs 

 95% 97% 99% 95% 97% 99% 

Median of ratio intra-/inter-specific 
variability (V) 0.71 0.64 0.68 0.37 0.36 0.47 

Quantile 2.5% of ratio intra-/inter- 
specific variability (V) 0.01 0.13 0 0.05 0.05 0.34 

Quantile 97.5% of ratio intra-/inter- 
specific variability (V) 1.32 1.53 1.49 1.08 1.34 0.58 
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